粒子群优化算法(PSO)附代码

1 算法介绍

粒子群优化算法(Particle Swarm Optimization,PSO)是一种经典的群智能算法,该算法灵感源自于鸟类飞行和觅食的社会活动,鸟群通过个体之间的信息交互来寻找全局最优点。PSO算法具有原理简单、较少的参数设置和容易实现等优点,因此近年来受到学者们的广泛关注和研究。

粒子群算法模拟鸟群的捕食过程,将待优化问题看作是捕食的鸟群,解空间看作是鸟群的飞行空间,空间的每只鸟的位置即是粒子群算法在解空间的一个粒子,也就是待优化问题的一个解。

粒子群算法有以下几点假设:

  1. 粒子被假定为没有体积没有质量,本身的属性只有速度和位置。

  2. 每个粒子在解空间中运动,它通过速度改变其方向和位置。

  3. 通常粒子将追踪当前的最优粒子以经过最少代数的搜索到最优解。

在算法的进化过程中,粒子一直都跟踪两个极值:一个是到个体历史最优位置,一个是种群历史最优位置。

2 算法模型

粒子群算法的核心思想是利用群体中的个体对信息的共享,从而使整个群体的运动在问题求解空间中产生从无序到有序的演化过程,从而获得问题的最优解。

在这里插入图片描述
粒子群算法的个体位置变化按两个基本公式:

v i d t + 1 = ω v i d t + c 1 r 1 ( p i d t − x i d t ) + c 2 r 2 ( p g d t − x i d t ) x i d t + 1 = x i d t + v i d t + 1 \begin{aligned} v_{i d}^{t+1} &=\omega v_{i d}^{t}+c_{1} r_{1}\left(p_{i d}^{t}-x_{i d}^{t}\right)+c_{2} r_{2}\left(p_{g d}^{t}-x_{i d}^{t}\right) \\ x_{i d}^{t+1} &=x_{i d}^{t}+v_{i d}^{t+1} \end{aligned} vidt+1xidt+1=ωvidt+c1r1(pidtxidt)+c2r2(pgdtxidt)=xidt+vidt+1

式中,r1和r2是介于(0,1)之间的随机数,c1和c2代表学习因子,取值一般为c1=c2=2。

根据速度更新公式可知,粒子的速度由三个部分构成:第一部分是对粒子之前速度的继承,体现了粒子运动的惯性;第二部分是自我认知,表示粒子自身之前的飞行经验对之后飞行方向的影响;第三部分是社会认知,表示种群中所有粒子的飞行经验对每个粒子之后飞行方向的影响。

3 实现步骤

Step1:初始化种群:包括搜索空间的上限和下限,两个学习因子c1,c2,算法的最大迭代次数T,每个粒子速度的上限和下限。随机初始化种群中每个粒子的位置和速度.

Step2:根据适应度函数计算每个粒子的适应值fitness,保存每个粒子的最优位置,保存个体最佳适应度值和群体迄今的最好位置.

Step3:根据速度、位置更新公式来更新速度和位置.

Step4:计算更新后每个粒子的适应度值,将每个粒子的最佳适应度值与其历史最优位置时的适应度值比较,如果较好,则将其当前的位置作为该粒子的最优位置.

Step5:对每个粒子,将它的最优位置对应的适应度值与种群最佳适应度值对比,如果更优,则更新种群最优位置和最佳适应度值.

Step6:判断搜索到的结果是否满足停止条件(达到最大迭代次数或满足精度要求),若满足停止条件则输出最优值,否则转到Step3继续运行直到满足条件为止.

在这里插入图片描述

4 MATLAB代码实现PSO算法

优化问题:求解函数最小值。

F = ∑ i = 1 D x i 2 F=\sum_{i=1}^{D} x_{i}^{2} F=i=1Dxi2

4.1. main.m

复制以下代码,粘贴到MATLAB,可直接运行出结果

% 主程序 PSO
clear
close all
clc
 
SearchAgents_no = 30 ; % 种群规模
dim = 10 ; % 粒子维度
Max_iter = 1000 ; % 迭代次数
ub = 5 ;
lb = -5 ;
c1 = 1.5 ; % 学习因子1
c2 = 1.5 ; % 学习因子2
w = 0.8 ; % 惯性权重
vmax = 3 ; % 最大飞行速度
pos = lb + rand(SearchAgents_no,dim).*(ub-lb) ; % 初始化粒子群的位置
v = - vmax +2*vmax* rand(SearchAgents_no,dim) ; % 初始化粒子群的速度
% 初始化每个历史最优粒子
pBest = pos ; 
pbestfit = zeros(SearchAgents_no,1);
for i = 1:SearchAgents_no
pbestfit(i) = sum(pos(i,:).^2) ; 
end
%初始化全局历史最优粒子
[gBestfit,index] = min(pbestfit) ;
gBest = pos(index,:) ;
Convergence_curve = zeros(Max_iter,1);
 
for t=1:Max_iter
    for i=1:SearchAgents_no
        % 更新个体的位置和速度
        v(i,:) = w*v(i,:)+c1*rand*(pBest(i,:)-pos(i,:))+c2*rand*(gBest-pos(i,:)) ;
        pos(i,:) = pos(i,:)+v(i,:) ;
        % 边界处理
        v(i,:) = min(v(i,:), vmax);
        v(i,:) = max(v(i,:), -vmax);
        pos(i,:) =min(pos(i,:), ub);
        pos(i,:) =max(pos(i,:), lb);
        % 更新个体最优
        f1 = sum(pos(i,:).^2);
        if f1<pbestfit(i)    
           pBest(i,:) = pos(i,:) ;
           pbestfit(i) = f1;
        end
        % 更新全局最优
       if pbestfit(i) < gBestfit
            gBest = pBest(i,:) ;
            gBestfit = pbestfit(i) ;
       end
    end
    % 每代最优解对应的目标函数值
    Convergence_curve(t) = gBestfit; 
    disp(['Iteration = ' num2str(t)  ', Evaluations = ' num2str(gBestfit)]);
end
 
figure('unit','normalize','Position',[0.3,0.35,0.4,0.35],'color',[1 1 1],'toolbar','none')
subplot(1,2,1);
x = -5:0.1:5;y=x;
L=length(x);
f=zeros(L,L);
for i=1:L
    for j=1:L
       f(i,j) = x(i)^2+y(j)^2;
    end
end
surfc(x,y,f,'LineStyle','none');
xlabel('x_1');
ylabel('x_2');
zlabel('F')
title('Objective space')
 
subplot(1,2,2);
semilogy(Convergence_curve,'Color','r','linewidth',1.5)
title('Convergence_curve')
xlabel('Iteration');
ylabel('Best score obtained so far');
 
axis tight
grid on
box on
legend('PSO')
display(['The best solution obtained by PSO is : ', num2str(gBest)]);
display(['The best optimal value of the objective funciton found by PSO is : ', num2str(gBestfit)]);
 
        
 
 
 

4.2. 运行结果

在这里插入图片描述

The best solution obtained by PSO is : -5.9693e-08  4.4549e-07 -1.8445e-08 -1.4353e-07 -2.0883e-07  -2.622e-08   2.743e-08 -1.0503e-08 -7.5957e-08 -6.4972e-07
The best optimal value of the objective funciton found by PSO is : 6.9603e-13
>> 
  • 103
    点赞
  • 823
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 39
    评论
求解最优化问题一直是遗传算法的经典应用领域,但是对于不同的最优化问题,遗传算法往往要重新设计“交叉”、“变异”算子,甚至要开发新的进化操作;另外遗传算法不容易理解、操作复杂、大多数情况下效率比较低。所以,寻求新的解决最优问题的算法一直是研究热点。对约束优化问题的求解,已有许多算法被提出。传统的方法有梯度映射法、梯度下降法、惩罚函数法、障碍函数法等,但是单纯使用这些方法不是效率很低就是适用范围有限。而进化计算由于其求解过程不依赖于目标函数的解析性质,同时又能以较大的概率收敛于全局最优解,所以用进化算法求解约束优化问题已是一个很有意义的研究方向。用进化计算求解约束优化问题时,最基本的思想就是:首先设法把个体带入可行域,然后再在可行域内找到尽可能好的解。求解约束优化问题最困难的主要是对约束条件的处理。目前,使用最广泛的对约束条件的处理方法是惩罚函数法。基于惩罚函数的进化算法一般来说都包含有许多惩罚系数,在实际应用时,只有正确设置这些系数才可能获得可行解,而要获得适当的惩罚系数则需要大量的实验为基础。在科学实践、工程系统设计及社会生产和经济发展中还有一类很常见到优化问题:多目标优化问题,因此研究多目标优化问题具有十分重要的意义。由于多目标优化问题不存在唯一的全局最优解,所以求解多目标优化问题实际上就是要寻找一个解的集合。传统的多目标优化方法是将多目标问题通过加权求和转化为单目标问题来处理的。但是,这种方法要求对问题本身有很强的先验认识,难以处理真正的多目标问题。进化计算由于其是一种基于种群操作的计算技术,可以隐并行的搜索解空间中的多个解,并能利用不同解之间的相似性来提高其并发求解的效率,因此进化计算比较合求解多目标优化问题。 粒子群优化(Particle Swarm Optimization, PSO)经济论文www.youzhiessay.com。 算法是由Kennedy和Eberhart于1995年提出的一种优化算法。它是对生物群体的社会行为进行的一种模拟,它最早源于对鸟群觅食行为的研究。在生物群体中存在着个体与个体、个体与群体间的相互作用、相互影响的行为,这种行为体现的是一种存在于生物群体中的信息共享的机制。PSO算法就是对这种社会行为的模拟,即利用信息共享机制,使得个体间可以相互借鉴经验,从而促进整个群体的发展。 PSO算法和遗传算法(Genetic Algorithm,GA)类似,也是一种基于迭代的优化工具,系统初始化为一组随机解,通过某种方式迭代寻找最优解。但PSO没有GA的“选择”、“交叉”、“变异”算子,编码方式也比GA简单。并且很多情况下要比遗传算法更有效率,所以基于粒子群算法处理优化问题中的是一个很有意义的研究方向。由于PSO算法容易理解、易于实现,所以PSO算法发展很快。在函数优化、系统控制、神经网络训练等领域得到广泛应用。 因此,本文在PSO算法基础上对PSO算法处理优化问题的能力及基于PSO算法,毕业论文网www.594wm.com,求解约束优化问题和多目标优化问题进行了深入研究。主要体现在以下几个方面:第一、介绍了有关粒子群优化算法的背景知识,阐述了算法产生的基础。 接着讨论了粒子群优化算法的发展和基本原理,并给出了算法的流程。通过对算法公式和参数设置进行的综合分析以及和其它优化算法进行比较,给出了粒子群优化算法实际使用时的指导原则。并讨论了算法在一些领域中的成功应用。第二、就粒子群优化算法在求解最优化问题中的应用,对无约束和有约束最优化问题分别设计了基于粒子群优化算法的不同的求解方法。对于无约束优化问题,本文直接用目标函数作为适应度函数,采用实数编码。对于约束优化问题,本文采用一种惩罚函数作为粒子群优化算法的适应度函数。 对两种问题分别应用了不同的测试函数对其进行了测试,结果表明了粒子群优化算法求解最优化问题的可行性。第三、针对约束优化问题本文在引入了半可行域的概念的基础上提出了竞争选择的新规则,并改进了基于竞争选择和惩罚函数的进化算法的适应度函数。并且本文规定了半可行解性质:半可行解优于不可行解,但劣于可行解。在半可行域内个体可直接用目标函数来评价。第四、结合粒子群优化算法本身的特点,本文设计了选择算子对半可行域进行操作,从而提出了利用PSO算法求解约束优化问题的新的进化算法。 第五、由于多目标优化问题和单目标优化问题是有本质的区别的:前者一般是一组或几组连续解的集合,而后者只是单个解或一组连续的解,所以PSO算法不能直接应用于多目标优化问题。因此本文对PSO全局极值和个体极值选取方式做了改进,提出了最优解评估选取的PSO算法,用于对多目标优化问题的非劣最优解集的搜索。实验结果证明了算法的有效性。粒子群算法的收敛性、基于粒子群算法求解不连续、多可行域的约束优化问题、基于粒子群算法求解高维多目标优化问题是本文的后续研究工作。
以下是一个简单的粒子群优化算法PSO)的代码示例: ``` import random class Particle: def __init__(self, x0): self.position = [] self.velocity = [] self.best_position = [] self.fitness = -1 for i in range(0, num_dimensions): self.velocity.append(random.uniform(-1, 1)) self.position.append(x0[i]) def evaluate(self, cost_function): self.fitness = cost_function(self.position) if self.fitness < self.best_fitness: self.best_fitness = self.fitness self.best_position = self.position def update_velocity(self, best_global_position): w = 0.5 c1 = 1 c2 = 2 for i in range(0, num_dimensions): r1 = random.random() r2 = random.random() cognitive_velocity = c1 * r1 * (self.best_position[i] - self.position[i]) social_velocity = c2 * r2 * (best_global_position[i] - self.position[i]) self.velocity[i] = w * self.velocity[i] + cognitive_velocity + social_velocity def update_position(self, bounds): for i in range(0, num_dimensions): self.position[i] = self.position[i] + self.velocity[i] if self.position[i] > bounds[i][1]: self.position[i] = bounds[i][1] if self.position[i] < bounds[i][0]: self.position[i] = bounds[i][0] class PSO: def __init__(self, cost_function, x0, bounds, num_particles, max_iterations): global num_dimensions num_dimensions = len(x0) best_global_position = [] best_global_fitness = -1 swarm = [] for i in range(0, num_particles): swarm.append(Particle(x0)) for i in range(0, max_iterations): for j in range(0, num_particles): swarm[j].evaluate(cost_function) if swarm[j].fitness < best_global_fitness: best_global_fitness = swarm[j].fitness best_global_position = list(swarm[j].position) for j in range(0, num_particles): swarm[j].update_velocity(best_global_position) swarm[j].update_position(bounds) print('Best position:', best_global_position) print('Best fitness:', best_global_fitness) def cost_function(x): return sum([i**2 for i in x]) bounds = [(-10, 10), (-10, 10), (-10, 10)] PSO(cost_function, x0=[0, 0, 0], bounds=bounds, num_particles=15, max_iterations=30) ``` 这个代码演示了如何使用 PSO 来最小化一个简单的函数。需要注意的是,这个示例只展示了基本的 PSO 实现,实际上,PSO 还有很多改进和扩展,例如变异粒子群优化算法(MPSO)、共生进化粒子群优化算法(CEPSO)等等。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 39
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Frank,Y

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值