解题思路:只要找一个最长的链,因为不需要两个点互相到达,只需要一个点能到另一个点就行了,但是这条链不能分叉,先tarjan,缩点,建新图,然后用递推思想,从ssc_cnt开始递减,按照拓扑序做,g[]数组代表以i点为终点的方案数,f[]数组代表以i为终点集合中点的数量。如果f[k]<f[i]+size[k]
g[k]=g[i],更新f[k],如果相等g方案数相加就行了。
#include<iostream>
#include<cstring>
#include<cstdio>
#include<set>
using namespace std;
const int N=100010,M=2000010;
int h[N],hs[N],e[M],idx,ne[M];
int ssc_cnt,Size[N],id[N];
int dfn[N],low[N];
int f[N],g[N];
int n,m,mod;
int s[N];
bool is[N];
int top,timestamp;
set<long long>ss;
void add(int h[],int a,int b)
{
e[idx]=b,ne[idx]=h[a],h[a]=idx++;
}
void targan(int u)
{
low[u]=dfn[u]=++timestamp;
s[++top]=u,is[u]=true;
for(int i=h[u];~i;i=ne[i])
{
int j=e[i];
if(!dfn[j])
{
targan(j);
low[u]=min(low[u],low[j]);
}
else if(is[j])
{
low[u]=min(low[u],dfn[j]);
}
}
if(low[u]==dfn[u])
{
int y;
++ssc_cnt;
do{
y=s[top--];
is[y]=false;
Size[ssc_cnt]++;
id[y]=ssc_cnt;
}while(y!=u);
}
}
int main()
{
memset(h,-1,sizeof h);
memset(hs,-1,sizeof hs);
scanf("%d%d%d",&n,&m,&mod);
while(m--)
{
int a,b;
cin>>a>>b;
add(h,a,b);
}
for(int i=1;i<=n;i++)
if(!dfn[i])
targan(i);
for(int i=1;i<=n;i++)
{
for(int j=h[i];~j;j=ne[j])
{
int k=e[j];
long long hash=id[i]*1000000ll+id[k];
if(id[k]!=id[i]&&!ss.count(hash))
{
ss.insert(hash);
add(hs,id[i],id[k]);
}
}
}
long long sum=0;
int maxv=0;
for(int i=ssc_cnt;i;i--)
{
if(!f[i])
f[i]=Size[i],g[i]=1;
for(int j=hs[i];~j;j=ne[j])
{
int k=e[j];
if(f[k]<f[i]+Size[k])
{
g[k]=g[i];
f[k]=f[i]+Size[k];
}
else if(f[k]==f[i]+Size[k])
{
g[k]=(g[k]+g[i])%mod;
}
}
}
for(int i=1;i<=ssc_cnt;i++)
{
if(f[i]>maxv)
{
maxv=f[i];
sum=g[i];
}
else if(f[i]==maxv)
{
sum=(sum+g[i])%mod;
}
}
cout<<maxv<<endl;
cout<<sum<<endl;
return 0;
}