最大半连通子图

在这里插入图片描述解题思路:只要找一个最长的链,因为不需要两个点互相到达,只需要一个点能到另一个点就行了,但是这条链不能分叉,先tarjan,缩点,建新图,然后用递推思想,从ssc_cnt开始递减,按照拓扑序做,g[]数组代表以i点为终点的方案数,f[]数组代表以i为终点集合中点的数量。如果f[k]<f[i]+size[k]
g[k]=g[i],更新f[k],如果相等g方案数相加就行了。

#include<iostream>
#include<cstring>
#include<cstdio>
#include<set>
using namespace std;
const int N=100010,M=2000010;
int h[N],hs[N],e[M],idx,ne[M];
int ssc_cnt,Size[N],id[N];
int dfn[N],low[N];
int f[N],g[N];
int n,m,mod;
int s[N];
bool is[N];
int top,timestamp;
set<long long>ss;
void add(int h[],int a,int b)
{
    e[idx]=b,ne[idx]=h[a],h[a]=idx++;
}
void targan(int u)
{
    low[u]=dfn[u]=++timestamp;
    s[++top]=u,is[u]=true;
    for(int i=h[u];~i;i=ne[i])
    {
        int j=e[i];
        if(!dfn[j])
        {
            targan(j);
            low[u]=min(low[u],low[j]);
        }
        else if(is[j])
        {
            low[u]=min(low[u],dfn[j]);
        }
    }
    if(low[u]==dfn[u])
    {
        int y;
        ++ssc_cnt;
        do{
            y=s[top--];
            is[y]=false;
            Size[ssc_cnt]++;
            id[y]=ssc_cnt;
        }while(y!=u);
    }
}
int main()
{
    memset(h,-1,sizeof h);
    memset(hs,-1,sizeof hs);
    scanf("%d%d%d",&n,&m,&mod);
    while(m--)
    {
        int a,b;
        cin>>a>>b;
        add(h,a,b);
    }
    for(int i=1;i<=n;i++)
    if(!dfn[i])
    targan(i);
    for(int i=1;i<=n;i++)
    {
    for(int j=h[i];~j;j=ne[j])
    {
        int k=e[j];
        long long hash=id[i]*1000000ll+id[k];
        if(id[k]!=id[i]&&!ss.count(hash))
        {
            ss.insert(hash);
            add(hs,id[i],id[k]);
        }
    }
    }
    long long sum=0;
    int maxv=0;
    for(int i=ssc_cnt;i;i--)
   {
       if(!f[i])
       f[i]=Size[i],g[i]=1;
    for(int j=hs[i];~j;j=ne[j])
    {
        int k=e[j];
        if(f[k]<f[i]+Size[k])
        {
            g[k]=g[i];
            f[k]=f[i]+Size[k];
        }
        else if(f[k]==f[i]+Size[k])
        {
            g[k]=(g[k]+g[i])%mod;
        }
    }
   }
    for(int i=1;i<=ssc_cnt;i++)
    {
        if(f[i]>maxv)
        {
            maxv=f[i];
            sum=g[i];
        }
        else if(f[i]==maxv)
        {
            sum=(sum+g[i])%mod;
        }
    }
    cout<<maxv<<endl;
    cout<<sum<<endl;
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值