元素和为目标值的子矩阵数量

在这里插入图片描述
思路:
由于n和m都是100以内,我们只要控制复杂度在n^3以内就行了,我们可以枚举任意两列,然后枚举行,用个哈希表存一下这种类型的前缀和,算一下贡献就行了。

在这里插入图片描述
代码:

const int N=1010;
class Solution {
public:
    int  s[N][N];
    int numSubmatrixSumTarget(vector<vector<int>>& matrix, int target) {
        memset(s,0,sizeof s);
        int n=matrix.size();
        int m=matrix[0].size();
        for(int i=1;i<=n;i++)
            for(int j=1;j <= m ; j ++)
            {
                s[i][j] = s[i-1][j] + s[i][j-1] - s[i-1][j-1] + matrix[i-1][j-1];
            }
        int res=0;
        for(int i=1;i<=m;i++)
        {
            for(int j=i;j<=m;j++)
            {
                unordered_map<int,int> mp ;
                mp[0]++;
                for(int k=1;k<=n;k++)
                {
                    int tt = s[k][j] - s[k][i-1] ;
                   
                    res+=mp[-target+tt];
                     mp[tt]++;
                    //cout<<i<<" "<<j<<" "<<k<<" res="<<res<<" tt="<<tt<<endl;
                   
                }
            }
        }
        return res;
    }
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值