数据挖掘 实验四、贝叶斯决策分类算法

实验介绍了如何利用VC++编程工具实现朴素贝叶斯决策分类算法,通过对AllElectronics顾客数据库进行分析,计算先验概率和类条件概率,并进行分类。实验涉及计算训练样本的先验概率和类条件概率,编写分类程序,评估分类错误率,以及展示程序框图和关键代码。
摘要由CSDN通过智能技术生成

数据挖掘 实验四、贝叶斯决策分类算法

一、 实验目的:
(1) 熟悉 VC++编程工具和朴素贝叶斯决策算法。
(2) 对 AllElectronics 顾客数据库查询得到先验概率和类条件概率。
(3) 在样本集上用 VC++编程工具编写用朴素贝叶斯算法分类的程序,对任务相关数据运行朴素贝叶斯分类算法,调试实验。
(4) 写出实验报告。
二、 实验原理:
1.先验概率和类条件概率
先验概率:先验概率定义为训练样本集中属于 Ci 类的样本(元组)数 Ni 与
总样本数 N 之比,记为PCi  Ni 。
N
类条件概率:类条件概率定义为训练样本集中属于 Ci 类中的具有特征 X 的
样本(元组)的个数 ni 与属于 Ci 类的样本(元组)数 Ni 之比,记为PX | Ci  ni 。
Ni
2.贝叶斯决策
贝叶斯决策(分类)法将样本(元组)分到 Ci 类,当且仅当
PX | Ci PCi PX | C j PC j ,对 1≤j≤m,j≠i
其中,训练样本集中的样本(元组)可被分为 m 类。
三、 实验内容:

  1. 实验内容
    用贝叶斯分类器对已知的特征向量 X 分类:
  1. 由 AllElectronics 顾客数据库类标记的训练样本集(元组)编程计算先验概率 P(Ci)和类条件概率 P(X|Ci),并在实验报告中指出关键代码的功能和实现方法;
  2. 应用贝叶斯分类法编程对特征向量 X 分类,并在实验报告中指出关键程序片段的功能和实现方法;
  3. 用检验样本估计分类错误率;
  4. 在实验报告中画出程序或例程的程序框图。
  1. 实验步骤
    由于该分类问题是决定顾客是否倾向于购买计算机,即 C1 对应于
    buys_computer=yes,C2 对应于 buys_computer=no,是两类的分类问题。实验步骤如下:
  1. 确定特征属性及划分:浏览所给的数据库,找出划分的特征属性;
  2. 获取训练样本:即给定的 AllElectronics 顾客数据库类标记的训练样本集
    (元组);
  3. 计算训练样本中每个类别的先验概率:P(Ci),i=1,2;
  4. 计算训练样本中类条件概率:设特征(属性)向量为 X,编程计算类条件概率 P(X|Ci),i=1,2;
  5. 使用分类器进行分类;
  1. 程序框图
    在这里插入图片描述
  2. 关键代码
#include<iostream> 
#include<string> 
#include<fstream> 
#include<algorithm> 
using namespace std;   
class Date  //存储结构 
{
      
    public:  
        string age;  
        string income;  
        string student;  
        string credit;  
        string buy;  
        void print()  
        {
      
        cout << age<< " "<< income << " "<<student<<" "<< credit <<" "<<buy<<endl;  
        }  
};
void compare_date_plus(string date,string indate,string buy,int& tempy,int& tempn)
{
   
    if(date==indate&&buy=="yes")
    {
   tempy++;}
    if(date==indate&&buy=="no")
    {
   tempn++;}
}   
int main()  
{
      
    char name1[50]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值