- 博客(535)
- 资源 (25)
- 收藏
- 关注
原创 我的大学
毕业设计暂时到了一个瓶颈,想不出有什么好办法,就趁这个时间回顾一下大学四年,也算是不浪费时间。所幸,每年都有几千字的年终总结,现在也派上了用场。时间:2021.4.11地点:湖南大学大一(2017.9)大一的时候吧,刚入学,回想一下我是什么样子。首先是比现在瘦多了,帅多了。当时算是我身体素质的巅峰吧,180的身高,140的体重,再加上一个假期的羽球训练,确实,比我现在强得不是一星半点。不过嘛,心态满浮躁的,既想要搞好学习,又想要搞好社团,还有班级工作,还有学生会。现在想一想,有些傲慢了。当了一年班长
2021-04-11 11:04:39 6060 28
原创 记己亥年丙子月疫
写在前面:早想写的一点东西,记录一下,这段亲历的历史己亥年丙子月,大疫,其来势之烈,危害之疾,虽谓之人祸,于天灾有过而无不及。庠序静寂,商贾闭户,泱泱中华,虽逢岁日,静似清明,上下俱寂,竟如人烟罕至之荒野,月明星稀之夜半,故叹曰:大国之大,不在武强,不在野广,而在齐心,而在意合。疫势如火,吾等常人唯恐避之不及,皆自缚于方寸之地,然大难之时必有大善之人,逆众生而行,做吾等之不敢做,行吾等之不敢行...
2020-03-02 09:56:10 5852
原创 贝叶斯课后习题(五)贝叶斯决策
贝叶斯决策有x服从B(3,θ)B(3,\theta)B(3,θ)因为先验在例题中提到是U(0,0.12)U(0,0.12)U(0,0.12),所以假设为[0,0.12][0,0.12][0,0.12]上的均匀分布π(θ)=10.12,0<θ<0.12\pi(\theta)=\frac1{0.12},0<\theta<0.12π(θ)=0.121,0<θ<0.12可有x的概率分布函数p(x∣θ)=C3xθx(1−θ)3−xp(x|\theta)=C_3^x\t
2021-12-03 18:51:51 1728
原创 贝叶斯课后习题(四)决策中的收益、损失与效用
决策中的收益、损失与效用这里行动集是{大、中、小},状态集是{畅销、一般、知晓}(大中小1005010畅销30409一般−60−206滞销)\left(\begin{array}{cc}大&中&小\\100&50&10&畅销\\30&40&9&一般\\-60&-20&6&滞销\end{array}\right)⎝⎜⎜⎛大10030−60中5040−20小1096畅销一般滞销⎠⎟⎟⎞maxamin
2021-12-03 18:51:11 1037
原创 贝叶斯课后习题(二)贝叶斯推断
贝叶斯推断有先验分布π(θ)=1,0<θ<1\pi(\theta)=1,0<\theta<1π(θ)=1,0<θ<1一次观察,此时样本的分布函数为p(x∣θ)=θ(1−θ)xp(x|\theta)=\theta(1-\theta)^xp(x∣θ)=θ(1−θ)x可有联合密度函数h(x,θ)=p(x∣θ)π(θ)=θ(1−θ)xh(x,\theta)=p(x|\theta)\pi(\theta)=\theta(1-\theta)^xh(x,θ)=p(x∣θ)π
2021-12-03 18:50:28 2739
原创 贝叶斯课后习题(一)先验分布与后验分布
先验分布与后验分布先验概率可以写为:π(θ){0.1,0.70.2,0.3\pi(\theta)\begin{cases}0.1,0.7\\0.2,0.3\end{cases}π(θ){0.1,0.70.2,0.3x服从二项分布B(8,θ)B(8,\theta)B(8,θ)即p(x∣θ)=C8xθx(1−θ)n−x={C8x0.1x(1−0.1)8−xC8x0.2x(1−0.2)8−xp(x|\theta)=C_8^x\theta^x(1-\theta)^{n-x}=\begin{cases}C
2021-12-03 18:49:39 2112
原创 贝叶斯课后习题(零)常用分布
常用的分布:分布名分布函数均值方差均匀分布U(a,b)U(a,b)U(a,b){1b−a(a,b)0other\begin{cases}\frac1{b-a}&(a,b)\\0&other\end{cases}{b−a10(a,b)othera+b2\frac{a+b}22a+b(a−b)212\frac{(a-b)^2}{12}12(a−b)2伽马分布Ga(α,β)Ga(\alpha,\beta)Ga(α,β)βαΓ(α)xα−1e−βx\
2021-12-03 18:48:52 518
原创 贝叶斯例题(四)决策中的收益、损失与效用
第四章 决策中的收益、损失与效用例4.1.4取θ\thetaθ用来表示市场需求量,这是具有随机性的变量。用a来表示购买量,这是人可以确定的行动,此时便有收益函数Q(θ,a)={1.1∗0.9∗a−0.65∗a0.9∗a≤θ1.1∗θ−0.65∗a+(0.9∗a−θ)∗0.30.9∗a>θQ(\theta,a)=\begin{cases}1.1*0.9*a-0.65*a&0.9*a\le\theta\\1.1*\theta-0.65*a+(0.9*a-\theta)*0.3&0.9
2021-12-03 18:47:48 1705
原创 贝叶斯例题(二)贝叶斯推断
第二章 贝叶斯推断例2.2.2求二项分布的共轭先验分布贝塔分布的最大后验估计和后验期望估计解:对二项分布B(n,θ)B(n,\theta)B(n,θ),共轭先验分布Be(α,β)Be(\alpha,\beta)Be(α,β)有后验分布Be(α+x,β+n−x)Be(\alpha+x,\beta+n-x)Be(α+x,β+n−x)即π(θ∣x)=Γ(α+β)Γ(α)Γ(β)θα−1(1−θ)β−1\pi(\theta|x)=\frac{\Gamma(\alpha+\beta)}{\Gamma(\a
2021-12-03 18:47:05 3295
原创 贝叶斯例题(一)先验分布与后验分布
第一章 先验分布与后验分布例1.2.1设事件A的概率是θ\thetaθ,有n次独立观测,事件A出现的次数为x,求后验分布解:首先写出先验分布π(θ)\pi(\theta)π(θ),由于没有,故采用0-1上的均匀分布π(θ)={10<θ<10other\pi(\theta)=\begin{cases}1&0<\theta<1\\0&other\end{cases}π(θ)={100<θ<1other再求解x的分布函数p(x∣θ)=Cnxθx(1
2021-12-03 18:46:25 5815
原创 贝叶斯(五)贝叶斯决策
五、贝叶斯决策贝叶斯决策问题将决策中的先验分布π(θ)\pi(\theta)π(θ)换为贝叶斯中的后验分布π(θ∣x)\pi(\theta|x)π(θ∣x)即可,需要样本f(a,x)=∫ΘL(θ,a)π(θ∣x)dθf(a,x)=\int_{\Theta}L(\theta,a)\pi(\theta|x)d\thetaf(a,x)=∫ΘL(θ,a)π(θ∣x)dθ,x为样本,这个是损失函数关于后验分布的期望,即后验期望损失a∗最优决策=δ(x)是样本的一个函数=argminaf(a,x)让
2021-11-28 12:15:34 1569
原创 贝叶斯(四)决策中的收益、损失与效用
四、决策中的收益、损失与效用决策问题的三要素决策:对一件事情做决定,与推断的差别在于是否设计后果贝叶斯决策:把损失函数加入贝叶斯推断就是贝叶斯决策,损失函数被称为贝叶斯统计中的第四种信息三要素:状态集Θ={θ}\Theta=\{\theta\}Θ={θ}:其中每个元素表示可能的一种状态,具有随机性行动集A={a}A=\{a\}A={a}:其中a表示人对状态可能采取的一种行动,不具有随机性收益函数Q(θ,a)Q(\theta,a)Q(θ,a):函数值表示某一状态下采用某种行动所获得的收益
2021-11-28 12:15:03 1766
原创 贝叶斯(三)先验分布的确定
三、先验分布的确定主观概率(离散型)利用对立事件的比较确定主观概率,例如成功的概率比失败高一倍利用专家意见确定主观概率利用多位专家确定主观概率利用历史资料,考虑现有信息加以修正利用先验信息确定先验分布(连续型):直方图法:将参数空间分成小区间在每个小区间上决定主观概率或依据历史数据确定其频率绘制频率直方图在直方图上做一条光滑曲线,即为先验分布选定先验密度函数形式再估计超参数根据先验信息选定θ\thetaθ的先验密度函数π(θ)\pi(\theta)π(θ)形式
2021-11-28 12:14:30 5447
原创 贝叶斯(二)贝叶斯推断
二、贝叶斯推断条件方法:基于后验分布(条件分布)的统计推断方法,只考虑当前的样本和数据,与未出现的数据无关。经典推断方法由于没有把未知量当做随机变量,所以只能从区间上进行变化,如给定一百个随机区间,这个未知量落在区间内的概率被当做推断条件。而贝叶斯推断可以直接把未知量当做随机变量,其落在某个区间内的概率当做推断条件。贝叶斯估计:最大后验估计θMD\theta_{MD}θMD:使后验密度π(θ∣x)\pi(\theta|x)π(θ∣x)达到最大值的θ\thetaθ后验中位数估计θMe
2021-11-28 12:13:58 2418
原创 贝叶斯(一)先验分布与后验分布
一、先验分布与后验分布先验分布:将一个未知量θ\thetaθ(这个θ\thetaθ并不是样本x)看做随机变量,应用一个概率分布在抽样前描述关于θ\thetaθ的先验信息的概率陈述,即先验分布总体信息:样本x所属的数据空间X的分布情况样本信息:样本x自身的分布情况,一般用P(x∣θ)=∏i=0nP(xi∣θ)P(x|\theta)=\prod_{i=0}^nP(x_i|\theta)P(x∣θ)=∏i=0nP(xi∣θ)表示后验分布:根据先验分布和样本信息通过贝叶斯公式得到的针对未
2021-11-28 12:13:17 10940 1
原创 机器学习(一):PLA&POCKET
实际上就是线性分类的感知机算法PLA和针对非线性的适用算法POCKETy(标签)={-1(bad),1(good)}h(x)=sign((∑i=1dwixi)−threshold(阈值))=sign(wTx)h(x)=sign((\sum^d_{i=1}w_ix_i)-threshold(阈值))=sign(w^Tx)h(x)=sign((∑i=1dwixi)−threshold(阈值))=sign(wTx)wT是超平面的法向量,为{w1,w2,...,wn,d}其中d为偏执量,w的维度与x样本
2021-11-17 23:27:24 954 2
原创 毕业设计实验日志2021.04.11
开始搞硬件我去,这玩意竟然真的动了???目前的情况是:1、en为0的时候并不是静止2、flagout方向无法调换推测问题为:3.3v高电位输出与需求的5.0v高电位输出不符
2021-04-11 14:58:25 440
原创 毕业设计实验日志2021.04.10
今天基本上完成了数据的分析,编写出来了一个可以分析一串离散点的周期性的函数,返回值为0-1的小数,越接近1则说明周期性越强,可以用于之后的gan对抗网络的判定网络。同时,在阅读《数学之美》的时候产生了一个想法,可以通过马尔科夫假设,计算二元模型的条件概率,以此来判定得到乐曲的规范性?具体是计算二元模型中这一对的出现次数和前元素的出现次数的比值来表示条件概率,计算条件概率之积来得到一首乐曲的出现概率,但这个数值将会非常小,所以在思考是否需要进行扩大化?...
2021-04-10 18:13:52 331
原创 毕业设计实验日志2021.03.24
数据处理完成,完成一代数据即两小节为一组的一代网络数据,代码编号003开始编写一代网络,预计4.1号前完成,代码编号004重难点1、数据读取更新2、遗传算法更新3、相似度算法更新4、网络结构更新5、随机算法更新*6、mid生成函数更新,添加节拍控制...
2021-03-24 17:33:57 196
原创 毕业设计实验日志2021.03.23
实验数据已经全部处理好了,并且已经处理成可以直接进入网络的形式,明天开始就可以进行网络处理了。今天进行了数据分析,得到了如下成果:目前还剩下一个问题,就是不同风格的权值,也就是小节时长的权值如何确定。目前暂定的是超过833.33时长的小节可以认为是舒缓的风格,但仍难以完全确定激进和抒情两种风格的小节的权值大小。不过数据已经有了分析结果,下面就是搭建网络,有之前的数据库存在,应该不是一件太难的事情。...
2021-03-23 17:14:14 186
原创 毕业设计实验日志2021.03.19
硬件方面遇到了难以想象的问题。滑块的移动目前是通过金属自复位开关实现的,相当于通过短路和开路进行移动控制,而无法用板子进行移动。尝试过使用门电路进行控制,但会直接被击穿,如果没有好的解决方案,硬件部分将会被搁置。软件方面将之前的乐曲进行更新,发现了新的问题。1、节拍不同,44拍目前是最常见的拍型,不同拍型节奏有着比较明显的区别,如68拍大多数歌曲节奏较快,而34拍和24拍亦是如此,相当于影响歌曲节奏的因素又增加了。2、同一节拍内,影响歌曲节奏的因素目前有:一分钟节拍数,一小节音符个数。同一节拍的不同
2021-03-19 17:21:37 259
原创 毕业设计实验日志2021.03.18
运动控制参数已经确定,基本确定速度为30mm/s、加速度为55mm/s2。速度过大导致精准度不够,速度过小导致移动时间过长,加速度影响运动精度,理论上来讲,加速度越大越好,速度越小越好。上电开机默认进入手动J__状态,在该状态下可以通过按钮进行左右移动的控制,也是后期控制机器人的主要状态。参数设置模式为P__状态,通过按下mode键进行控制。该模式下一共有8个参数,各个参数通过UP和DOWN进行切换,按SET会进入相应设置界面,shift移位移动需要设置的位。本项目中,只需要考虑参数3速度和参数4加
2021-03-18 17:32:17 197
原创 毕业设计实验日志2021.03.16
已完成对数据库的扩充,总共扩充50首,长度从1min到5min不等。涵盖多个节拍,不同节奏,不同曲风。下一步将会整合原有数据库。考虑是否需要按照节拍(暂定两小节为一对)进行进一步分类。日后根据网络的要求进行三分类以及四分类...
2021-03-16 18:37:00 302
原创 毕业设计实验日志2021.03.11
数据问题基本解决,现已知如下:1、需要将makemid函数中加入节拍的控制参数,以此来达到不同风格的控制2、mid读取到的文件中,格式为“音符、节拍数”,因此一般为0.5,0.75,2之类的有限小数,通过这个参数可以得到每小节(四拍)的音符,并进行精确划分,问题在于如何处理跨小节的延长音符(以《送别》为例)3、现有数据库为74首,在不考虑风格之后,仍有希望将加入更多乐曲(预期本周完成),无法通过代码实现,需要人工编写简谱并生成MIDI文件,要求为C大调、4/4拍即可4、addNote函数中参数为(音
2021-03-11 16:01:56 251
原创 毕业设计实验日志2021.03.09
今天实现了用代码进行数据的处理:1、用和弦根音来简化和弦2、多音轨的筛选,用高音音轨而省去低音音轨(右手音轨而非左手音轨)效果并不好一方面无法修改节拍,另一方面容易出现杂音明天还是用人工进行标注吧...
2021-03-09 20:09:52 245
原创 毕业设计实验日志2021.0304
昨日雨,未进行实验今日主要工作:设计实现将多音轨的MIDI音乐文件化简为单音轨的MIDI音乐文件的代码,进行中
2021-03-04 16:51:30 247 1
原创 毕业设计实验日志2021.0302
今天主要进行软件方面的工作上午在宿舍进行了数据的初步处理,耗费了一些时间。今天主要发现的难点在于:如何将多音轨的MIDI音乐文件化简为单音轨的MIDI音乐文件,以此达到网络能够接受的数据。主要有以下内容:1、和弦的化简。初步想法是找到和弦的根音,并以根音替代和弦2、多音轨的合并。每条音轨的音符密度是不一样的,而音符密度可以近似的表示该条音轨在某一段时间的重要性。因为音轨是近似和人的左右手相对应的,所以在低音区的主旋律和高音区的主旋律可能存在于不同的音轨,而我则需要找出主旋律所在的音轨并进行提取。初
2021-03-02 19:43:21 303
原创 毕业设计实验日志2021.03.01
昨天刚刚到学校,在清理了宿舍之后并没有进行工作。今天上午八点到达实验室,主要进行设备的检查,结果如下:1)电子琴运行正常,可以正常使用,仍然需要耳机才能发声,考虑是否需要准备音响2)同步带模组运行正常,硬件无问题,但速度与加速度在假期期间被修改,需要重新设置。这里需要研究一下说明,而且需要测量出最好的速度与加速度,比较耗费时间。3)3d打印机运行正常,耗材可用无损耗,可以直接使用。4)FPGA开发板运行正常,可以正常输出新号控制机械手。5)机械手运行正常,可以正常实现按压,但第二个机械手需要重新
2021-03-01 18:31:33 538
原创 英美国家时政与辩论辩题汇总
1、THR(反对) the portrayal of mental and psychological disorders in the entertainment industry.You can choose to write for the Oppositional side or the Propositional side. Write for less than 200 words.正方认为患有精神疾病和心理疾病的人不应该从事某些高精度行业I think people with mental
2021-01-20 18:03:46 5258 1
原创 智能控制基础总结
第一章1、六大元件:比较元件、校正元件、放大元件、执行元件、测量反馈元件、被控对象2、分类:(1)形式:开环、闭环、复合(扰动、输入)(2)变化规律:恒值、随动、程序控制(3)连续:连续、离散(4)动态方程:线性、非线性3、指标:稳定性(动态)、快速性(动态)、准确性(静态)4、形式:单调收敛、单调发散、震荡收敛、震荡发散、等幅振荡第二章1、微分方程式:左边为输出量,右边为输入量;左边为输出响应,右边为输入相应2、拉氏变换:Uc=Uc(s),Uc一阶导数=sUc(s),Uc二阶导
2021-01-12 22:15:06 2201
原创 智能控制基础考前复习题库
第一章1、六大元件:比较元件、校正元件、放大元件、执行元件、测量反馈元件、被控对象2、分类:(1)形式:开环、闭环、复合(扰动、输入)(2)变化规律:恒值、随动、程序控制(3)连续:连续、离散(4)动态方程:线性、非线性3、指标:稳定、快速、准确4、形式:单调收敛、单调发散、震荡收敛、震荡发散、等幅振荡第二章1、电阻R、电容C、电感 L组成的电路如图所示,试写出以ur(t)为输入量、uc(t)为输出量的电路微分方程。2、已知系统的微分方程式,求系统的输出响应。3、将液位控
2021-01-12 16:36:43 5134
原创 模式识别与机器识别考试重点
一、SVM:1、相比于传统线性回归、逻辑回归的优势是什么?(1)预测结果是介于0和1之间的概率(2)可以适用于连续性和类别性自变量,适合二分类问题,不需要缩放输入特征(3)简单易理解,模型的可解释性非常好,从特征的权重可以看到不同的特征对最后结果的影响(4)训练速度较快,分类的时候,计算量仅仅只和特征的数目相关2、支持向量是什么,如何确定?在支持向量机中,距离超平面最近的且满足一定条件的几个训练样本点被称为支持向量。3、多元SVM如何设计?SVM算法最初是为二值分类问题设计的,当处理多类问
2021-01-06 14:31:10 1027
原创 智能控制基础实验3p
题目1A=[50]B =[1 4 -7 -10]GG=tf(A,B)bode(GG)axis([-inf,inf,40,4-60])bode(GG)impulse(GG)题目2C=[0 0 16.7 0]D=conv(conv([0.85 1],[0.25 1]),[0.0625 1])G1=tf(C,D)G2=G1/(G1+1)G3=10*G2G4=G3/(G3+1)nyquist(G4)rlocus(G3)nichols(G4)文件在资源...
2021-01-05 19:43:34 363 2
翻译-Concept of software interface for BCI-BCI系统软件接口的概念.docx
2020-05-19
中国道路交通标志训练集(1684p).zip
2020-05-16
计算机系统实验7microcomputer003.zip
2020-03-16
计算机系统实验6微程序控制器.zip
2020-03-16
计算机系统5时序电路.zip
2020-03-16
计算机系统实验4数据通路.zip
2020-03-16
计算机系统3存储器.zip
2020-03-16
计算机系统实验2运算器.zip
2020-03-16
计算机系统实验1总线.zip
2020-03-16
0-福字生成器.zip
2020-01-17
CPU4(success).zip
2019-12-02
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人