08 支持向量机SVM
8-1 什么是SVM




8-2 SVM背后的最优化问题








8-3 Soft Margin SVM



8-4 scikit-learn中的SVM















8-5 SVM中使用多项式特征和核函数








8-6 到底什么是核函数






8-7 RBF核函数












8-8 RBF核函数中的gamma
















8-9 SVM思想解决回归问题




VM思想解决回归问题
[外链图片转存中…(img-v9DTl6a5-1665460783944)]
[外链图片转存中…(img-rF2mMyqF-1665460783945)]
[外链图片转存中…(img-mzRsWkpm-1665460783946)]
[外链图片转存中…(img-tLfjfYlS-1665460783947)]
本文深入探讨了支持向量机(SVM)的基本概念及其在机器学习中的应用。内容覆盖从SVM的基础理论到解决实际问题的具体方法,包括软间隔SVM、多项式特征与核函数的应用、RBF核函数的理解及参数调整等关键技术点。
1876

被折叠的 条评论
为什么被折叠?



