08 支持向量机SVM

本文深入探讨了支持向量机(SVM)的基本概念及其在机器学习中的应用。内容覆盖从SVM的基础理论到解决实际问题的具体方法,包括软间隔SVM、多项式特征与核函数的应用、RBF核函数的理解及参数调整等关键技术点。

08 支持向量机SVM

8-1 什么是SVM

image-20221010112150133

image-20221010112739015

image-20221010112830711

image-20221010112858096

8-2 SVM背后的最优化问题

image-20221010112958766

image-20221010113249498

image-20221010113520439

image-20221010113736619

image-20221010113909352

image-20221010114017266

image-20221010114147272

image-20221010114223661

8-3 Soft Margin SVM

image-20221010114552831

image-20221010114757051

image-20221010114930128

8-4 scikit-learn中的SVM

image-20221010115136081

image-20221010115226969

image-20221010115242543

image-20221010115326341

image-20221010115335253

image-20221010115420696

image-20221010115428805

image-20221010115440127

image-20221010115500470

image-20221010115509322

image-20221010115543279

image-20221010115639946

image-20221010115706272

image-20221010115718851

image-20221010115748520

8-5 SVM中使用多项式特征和核函数

image-20221010151940327

image-20221010151950808

image-20221010152024022

image-20221010152228127

image-20221010152238039

image-20221010152245638

image-20221010152415180

image-20221010152439626

8-6 到底什么是核函数

image-20221010152554824

image-20221010153221589

image-20221010153228015

image-20221010153308327

image-20221010153437477

image-20221010153552308

8-7 RBF核函数

image-20221010153621990

image-20221010153654875

image-20221010153752954

image-20221010153804921

image-20221010153817128

image-20221010153832992

image-20221010153852596

image-20221010153903337

image-20221010153934046

image-20221010153950478

image-20221010154044296

image-20221010154145493

8-8 RBF核函数中的gamma

image-20221010200914997

image-20221010200927457

image-20221010201010342

image-20221010201021765

image-20221010201029655

image-20221010201048390

image-20221010201057024

image-20221010201118482

image-20221010201124352

image-20221010201150592

image-20221010201226553

image-20221010201240414

image-20221010201250402

image-20221010201303366

image-20221010201310962

8-9 SVM思想解决回归问题

image-20221010201411694

image-20221010201432241

image-20221010201453712

image-20221010201513852
VM思想解决回归问题

[外链图片转存中…(img-v9DTl6a5-1665460783944)]

[外链图片转存中…(img-rF2mMyqF-1665460783945)]

[外链图片转存中…(img-mzRsWkpm-1665460783946)]

[外链图片转存中…(img-tLfjfYlS-1665460783947)]

评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符  | 博主筛选后可见
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值