金融物流数仓_赛题业务

赛题背景

1、科技和零售的发展,诞生了上线电商和线下独立经营 深度结合的全场景多业态业务模式。中国拥有万亿市场规模的生鲜商品,已成为全场景多业态零售商的引流明星,不同于可口可乐等标准化商品,生鲜商品货架期短、易损耗、价格变化频繁,同时多业态销售又增加了新的不确定性,利用人脑每天为成千上万的生鲜商品进行库存决策变得十分困难,借用 AI 技术已经成为行业发展的必然趋势。
2、本题将还原零售全场景多业态生鲜超市的真实场景,探索利用 AI 技术、运筹学模型来帮助零售商提升供应链计划水平,构建库存履约一体化智能决策系统,以实现利润与效率最优。

赛题任务

B1问题。
门店备货采用前场+后场布局。前场超市门店,用于商品陈列展示,支持全部线下订单和部分线上订单履约;后场为门店仓库,用于商品存放并优先支持线上订单履约。两个重要决策:
(1)总备货量:根据商品销售历史和最新信息,预估商品未来销量,决定每日备货总量。
备货量充足带来销售利润R,
备货量不足产生缺货机会成本L、并降低订单履约率A,
备货过多造成损耗C;
(2)前后场库存分配:根据线上线下订单分布决策库存前后场分配,降低履约成本V、提高履约效率D。
前场缺货,及时从后场向前场搬运商品,增加履约成本V。后场货物摆放集中拣货成本低于效率高于前场。
后场缺货就需要启动前场拣货,也会增加履约成本V并降低履约效率D。
不同的商品备货数量及前后场备货量分配方案,有不同的
(1)总利润 S = R − L - C - V;
(2)履约效率D;
(3)履约率A。
B2任务。
请参赛者建模输出评测范围指定的多家门店每个目标商品i、在每家门店j、前场k和后场m、未来两周内每日t的备货数量,实现全部门店未来两周总的最高总利润S和履约效率D。
备货方案需满足 4 个条件:
(2-1)全部门店平均履约率 A ≥ 70%;
(2-2)
(2-3)若商品备货数量> 0,该商品必须在前场陈列,即如果;
(2-4)每天各门店后场备货商品种类占比 ≤ 20%,后场备货商品数量占比 ≤ 40%。举例说明,若某日某门店评测的目标商品共 1000 种、参赛者提交的备货总量是 8000 件,则当日该门店后场最多为 200 种商品备货、后场最多备货数量为 3200 件。提示:门店间的货物不能共享,只能履约各自门店的订单。

数据和专业术语说明

C1数据简介。
数据来源于真实的全场景多业态生鲜超市业务,经脱敏和简化处理后提供给参赛者,包含:
(1)历史数据:某电商平台生鲜品牌超市多家门店、过去两年线上和线下订单的销售数据、商品数据、库存数据、价格数据、促销数据,门店所在区域的天气数据;
(2)测评数据:提供测评目标商品和日期,以及测评日期对应的商品价格、促销和天气信息。真实订单数据作为验证数据,不予公布。参赛者可以通过合法途径自行补充外部公开的数据用于辅助,如节假日、618大促、疫情等信息;若使用外部公开数据,需要在提交方案时说明数据获取途径。
C2数据说明。
(1)历史数据用来建立未来每家门店每个商品的销量预测模型,从而计算备货量;
(2)因开店时间不同,每家门店数据的时间跨度不一样;
(3)历史库存数据为每日营业结束后的剩余库存,该值为 0 说明当天商品的消费者需求可能没完全释放,实际需求可能高于当日商品的订单销量总和;
(4)数据格式:见数据文档。
C3关键术语。
(1)备货:每天营业前准备好适当数量(≥0)的商品以供销售;
(2)库存:门店内实际存放的所有商品;
(3)前场库存:存放在前场的商品;
(4)后场库存:存放在后场的商品;
(5)拣货:根据线上订单购买商品清单,门店备齐商品,线下订单不涉及拣货;
(6)后场完单:线上订单购买的商品在后场库存均足够,拣货只在后场发生;
(7)履约:用户下单到订单完成的过程;
(8)可履约*:如果用户订单购买的所有商品在门店内库存足够,则该订单可履约;反之,若任一商品缺货,该订单不可履约;
(9)履约成本*:履约过程中产生的成本;
(10)履约效率*:完成订单履约的效率;
(11)缺货机会成本:由商品缺货导致的潜在销售利润损失;
可履约*:本赛题简化复杂业务逻辑,只考虑整单履约,不考虑履约部分有货商品的情况。
履约成本*:本赛题特指线下销售带来的后场向前场搬货成本、线上订单带来的前后场拣货成本,不考察其他成本。
履约效率*:本赛题特指可履约的线上订单中,后场完单的订单占比。

提交要求

D1评测商品的备货结果
提交的格式:标准 csv 文件,文件大小不超过 10MB,英文逗号分隔,采用无 BOM 的 utf8 编码。
提交的内容:需要包含全部门店的全部商品在未来日期范围内每天的前场备货数量和后场备货数量,即使备货数量为 0 也需要包含。总的数据行数为:门店数 * 商品数 * 备货天数。
文件列说明:共 5 列,分别为 date, store_id, sku_id, x_k, x_m。其中:date 列表示备货日期,格式为 yyyy-mm-dd,如 2023-09-15;store_id 列表示门店编号,正整数;sku_id 列表示商品编号,正整数;x_k 列表示前场备货数量;x_m 表示后场备货数量; x_k 和 x_m 最多保留 2 位小数。
D2方案的全部代码和说明文档
● 提交的格式:zip包;
● 提交的内容:方案的全部源代码、程序运行环境说明、其他必要说明,外部辅助数据(若有的话);
方案需要支持可以复现提交的参赛结果。
评测标准
E1评测指标 评测排名分为AB榜

E2评测程序计算逻辑

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值