1、插入优化
☆insert:批量插入(500~1000),手动控制事务,主键顺序插入。
大批量插入数据使用MySQL数据库提供的load指令进行插入,相关语法:
★客户端连接服务端加上参数local-infile
mysql --local-infile -u root -p ******
★查看全局参数local_infile
select @@local-infile;
★全局参数local_infile为1,开启从本地加载文件导入数据的开关
set global local_infile=1;
★执行load指令将准备好的数据加载到表结构中
load data local infile "数据路径" into table 表名 fields terminated by "分隔符" lines terminated by "每一行使用什么分隔";
☆主键顺序插入性能高于乱序插入
2、主键优化
●页分裂
●页合并
●主键优化原则:
◇满足业务需求的情况下,尽量降低主键的长度
◇插入数据时,尽量选择顺序插入,选择使用AUTO_INCREMENT自增主键
◇尽量不要使用UUID做主键或者是其他自然主键,如身份证号
◇业务操作时,避免对主键的修改
3、order by优化
① Using filesort :通过表的索引或全表扫描,读取满足条件的数据行,然后在排序缓冲区sort buffer中完成排序操作,所有不是通过索引直接返回排序结果的排序都叫FileSort排序。
② Using index :通过有序索引顺序扫描直接返回有序数据,这种情况即为using index,不需要额外排序,操作效率高。
#没有创建索引时,根据age, phone进行排序
explain select id,age,phone from tb_user order by age , phone; →Using filesort
#创建索引(默认升序)
create index idx_user_age_phone_ad on tb_user(age,phone);
#创建索引后,根据age, phone进行升序排序
explain select id,age,phone from tb_user order by age , phone; →Using index
#创建索引后,根据age, phone进行降序排序
explain select id,age,phone from tb_user order by age desc , phone desc ; →Using filesort
# 根据age,phone进行一个升序一个降序
explain select id,age,phone from tb user order by age asc , phone desc; →Using index,Using filesort
# 创建索引
create index idx_user_age_phone_ad on tb_user(age asc ,phone desc);
# 根据age,phone进行一个升序一个降序
explain select id,age,phone from tb_user order by age asc , phone desc; →Using index
查看缓冲区大小:
show variables like "sort_buffer_size";
注:
➢根据排序字段建立合适的索引,多字段排序时,也遵循最左前缀法则。
➢尽量使用覆盖索引。
➢多字段排序,一个升序一个降序,此时需要注意联合索引在创建时的规则(ASC/DESC)。
➢如果不可避免的出现filesort, 大数据量排序时,可以适当增大排序缓冲区大小sort_buffer_size(默认256k)。
4、group by优化
#删除掉目前的索引
drop index 索引名 on 表名;
#执行分组操作,根据profession字段分组
explain select profession, count(*) from tb_user group by profession ; →Using temporary
#创建索引
Create index idx_user_pro_age_sta on tb_user(profession, age , status);
#执行分组操作,根据profession字段分组
explain select profession, count(*) from tb_user group by profession; →Using index
#执行分组操作,根据age字段分组
explain select age, count(*) from tb_user group by age; →Using index,Using temporary
#执行分组操作,根据profession,age字段分组
explain select profession,age, count(*) from tb_user group by profession, age;
→Using index
#执行分组操作,根据profession="软件工程",age字段分组
explain select age, count(*) from tb_user where profession="软件工程", group by age;
→Using index
➢在分组操作时,可以通过索引来提高效率。
➢分组操作时,索引的使用也是满足最左前缀法则的。
5、limit优化
一个常见又非常头疼的问题就是limit 2000000,10,此时需要MySQL排序前20000,10记录,仅仅返回2000000 - 2000010的记录,其他记录丢弃,查询排序的代价非常大。
优化思路: 一般分页查询时,通过创建覆盖索引能够比较好地提高性能,可以通过覆盖索引加子查询形式进行优化。
优化:
explain select * from tb_sku t , (select id from tb_sku order by id limit 200000,10) a where t.id = a.id;
5、count优化
explain select count(*) from tb _user ;
➢MyISAM 引擎把一个表的总行数存在了磁盘上,因此执行count(*)的时候会直接返回这个数,效率很高;
➢InnoDB 引擎就麻烦了,它执行count(*)的时候,需要把数据一行一行地从引擎 里面读出来,然后累积计数。
优化思路:自己计数。
●count的几种用法
➢count()是一个聚合函数,对于返回的结集,一行一行地判断,如果count函数的参数不是NULL, 累计值就加1, 否则不加,最后返回累计值。
➢用法: count(*)、count(主键)、count(字段)、count(1)/count(0)/count(-1)
➢count(主键)
InnoDB引擎会遍历整张表,把每一行的 主键id值都取出来,返回给服务层。服务层拿到主键后,直接按行进行累加(主键不可能为null)。
➢count(字段)
没有not null约束: InnoDB引擎会遍历整张表把每一行的字 段值都取出来,返回给服务层,服务层判断是否为null,不为null, 计数累加。有not null约束: InnoDB引擎会遍历整张表把每一行的字 段值都取出来,返回给服务层,直接按行进行累加。
➢count(1)/count(0)/count(-1)
InnoDB引擎遍历整张表,但不取值。服务层对于返回的每一行, 放一个数字“1” 进去,直接按行进行累加。
➢count(*)
InnoDB引擎并不会把全部字段取出来,而是专门做了优化,不取值,服务层直接按行进行累加。
按照效率排序的话,count(字段) < count(主键id) < count(1)≈count(*),所以尽量使用count(*)。
6、update优化
对有索引的进行修改为行锁,对没有索引的进行修改为表锁,规避行锁升级为表锁,否则性能会降低。
行锁:
update student set no= '2000100100' where id = 1;
表锁:
update student set no = '2000100105' where name='张三';
InnoDB的行锁是针对索引加的锁,不是针对记录加的锁,并且该索引不能失效,否则会从行锁升级为表锁。