实验内容
建立一个文本文件,统计给定单词在文本文件中出现的总次数及位置。
实验要求
-
文本文件中每个单词不包含空格且不跨行,单词由字符序列构成且区分大小写,统计给定单词在文本文件中出现的总次数,检索输出的某个单词出现在文本中的行号、在该行中出现的位置。
-
设计数据量大的文本,进行子串的查询处理,分析算法运行的时间效率,对所有输出的匹配位置结果进行验证,以证明算法设计和实现的正确性。
-
用朴素模式匹配算法或KMP算法实现字符串定位;
-
可正确读取,保存文本;
编程语言及开发环境
编程语言:JAVA
开发环境:IntelliJ IDEA 2020.3.2
实验思路
一、朴素模式匹配算法
简单讲就是把模式串跟母串从左向右或从右向左一点一点比较:先把模式串的第一个字符同母串的第一个字符比较,若相等则接着比较后面的对应字符;若不等,把模式串后移一个位置,再次从模式串的头部比较。
假设主串的长度为N
,待匹配串的长度为M
,因为需要遍历主串,每次匹配的长度都小于等于M
,所以它的时间复杂度是O(M*N)
的。
二、KMP模式匹配算法
操作流程:
-
假设现在文本串·
S
匹配到i
位置,模式串P
匹配到j
位置 -
如果
j = -1
,或者当前字符匹配成功(即S[i] == P[j]
),都令i++
,j++
,继续匹配下一个字符; 如果j != -1
,且当前字符匹配失败(即S[i] != P[j]
),则令i
不变,j = next[j
]。此举意味着失配时,模式串 P相对于文本串S
向右移动了j - next [j]
位 -
换言之,将模式串
P
失配位置的next
数组的值对应的模式串 P 的索引位置移动到失配处
三、KMP算法的时间复杂度:
-
计算Partial_Table(或者说是计算模式串的最长公共前缀后缀长度列表)时的比较次数介于
[m,2m]
,假设m
时模式串的长度. -
比较模式串和子串时比较次数介于[n,2n],最坏情形形如
T="aaaabaaaab"
,P="aaaaa"
. -
所以算法时间复杂度时
O(m+n)