论文趋势分析——论文种类分类

4.1 任务说明

  • 学习主题:论文分类(数据建模任务),利用已有数据建模,对新论文进行类别分类;
  • 学习内容:使用论文标题和摘要完成类别分类;
  • 学习成果:学会文本分类的基本方法、TF-IDF等;

4.2 数据处理步骤

在原始arxiv论文中论文都有对应的类别,而论文类别是作者填写的。在本次任务中我们可以借助论文的标题和摘要完成:

  • 对论文标题和摘要进行处理;
  • 对论文类别进行处理;
  • 构建文本分类模型;

4.3 文本分类思路

  • 思路1:TF-IDF+机器学习分类器

直接使用TF-IDF对文本提取特征,使用分类器进行分类,分类器的选择上可以使用SVM、LR、XGboost等

  • 思路2:FastText

FastText是入门款的词向量,利用Facebook提供的FastText工具,可以快速构建分类器

  • 思路3:WordVec+深度学习分类器

WordVec是进阶款的词向量,并通过构建深度学习分类完成分类。深度学习分类的网络结构可以选择TextCNN、TextRnn或者BiLSTM。

  • 思路4:Bert词向量

Bert是高配款的词向量,具有强大的建模学习能力。

4.4 具体代码实现以及讲解

#导入所需的package并读取原始数据
import json
import pandas as pd  # 数据处理和分析
data = []
with open('arxiv-metadata-oai-snapshot.json','r') as f:
    for idx, line in enumerate(f):
        d = json.loads(line)
        d = {'title':d['title'],'categories':d['categories'],'abstract':d['abstract']}
        data.append(d)
        
        # 只选取部分数据
        if idx > 200000:
            break

data = pd.DataFrame(data)
data

在这里插入图片描述
为了完成数据处理,我们将标题和摘要拼接在一起完成

# 合并title和abstract
data['text'] = data['title'] + data['abstract']

# 将换行符替换为空格
data['text'] = data['text'].apply(lambda x: x.replace('\n',''))

# 将所有大写字母替换为小写字母
data['text'] = data['text'].apply(lambda x: x.lower())

# 删除多余的列
data = data.drop(['abstract','title'], axis=1)
data

在这里插入图片描述

由于原始论文有可能有多个类别,所以也需要处理:

# 多个类别,包含子分类
data['categories'] = data['categories'].apply(lambda x : x.split(' '))

# 单个类别,不包含子分类
data['categories_big'] = data['categories'].apply(lambda x : [xx.split('.')[0] for xx in x])

在这里插入图片描述
然后将类别进行编码,这里类别是多个,所以需要多编码:

  • MultiLabelBinarizer的使用方法链接:link.
from sklearn.preprocessing import MultiLabelBinarizer
mlb = MultiLabelBinarizer()
data_label = mlb.fit_transform(data['categories_big'].iloc[:])
data_label

在这里插入图片描述

4.4.1 思路1

TF-IDF(term frequency-inverse document frequency)词频-逆向文件频率。在处理文本时,如何将文字转化为模型可以处理的向量呢?TF-IDF就是这个问题的解决方案之一。字词的重要性与其在文本中出现的频率成正比(TF),与其在语料库中出现的频率成反比(IDF)。

TF:词频。TF(w) = (词w在文档中出现的次数) / (文档的总词数)

IDF:逆向文件频率。有些词可能在文本中频繁出现,但并不重要,也即信息量小,如 is, of, that 这些单词,这些单词在语料库中出现的频率也非常大,我们就可以利用这点,降低其权重。IDF(w) = log_e(语料库的总文档数) / (语料库中词 w 出现的文档数)

将上面的 TF-IDF 相乘就得到了综合参数:TF-IDF=TF*IDF

  • TfidfVectorizer简介:link.

  • 将原始句子转换成词频向量

思路1使用TFIDF提取特征,限制最多4000个单词:

from sklearn.feature_extraction.text import TfidfVectorizer
vectorizer = TfidfVectorizer(max_features=4000)
data_tfidf = vectorizer.fit_transform(data['text'].iloc[:])

由于这里是多标签分类,可以使用sklearn的多标签分类进行封装:

# 划分训练集和验证集
from sklearn.model_selection import train_test_split
x_train, x_test, y_train, y_test = train_test_split(data_tfidf, data_label,
                                                 test_size = 0.2,random_state = 1)

# 构建多标签分类模型
from sklearn.multioutput import MultiOutputClassifier
from sklearn.naive_bayes import MultinomialNB
clf = MultiOutputClassifier(MultinomialNB()).fit(x_train, y_train)

验证模型的精度:

from sklearn.metrics import classification_report
classification_report(y_test, clf.predict(x_test))

在这里插入图片描述

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值