极小-极大双层多目标优化机器学习中的应用

极小-极大双层多目标优化机器学习中的应用


研究动机

在安全关键型机器学习应用(如少样本人脸识别和跨人口统计的元学习)中,传统多任务优化方法(如平均损失最小化)存在严重局限性。这类方法容易忽视任务的“最坏情况”性能,导致模型在特定子群体或任务上表现脆弱。例如,元学习算法(如MAML)在任务分布偏移时泛化能力显著下降。现有双层优化框架(Bilevel Optimization, BO)多关注单目标场景,无法有效平衡多任务间的鲁棒性与泛化性。本文首次提出min-max双层多目标优化框架,旨在同时优化共享参数的鲁棒性和任务特定参数的适应性,为安全关键场景提供理论保障。


1. 问题模型与研究目标

问题模型

  • 双层多目标优化问题
    min ⁡ x ∈ X max ⁡ i ∈ [ n ] f i ( x , y i ⋆ ( x ) ) s.t.  y i ⋆ ( x ) = arg ⁡ min ⁡ y i g i ( x , y i ) , ∀ i ∈ [ n ] \begin{array}{l} \min_{x\in\mathcal{X}} \max_{i\in[n]} f_i\left(x, y_i^{\star}(x)\right) \\ \text{s.t. } y_i^{\star}(x)=\arg\min_{y_i} g_i\left(x, y_i\right), \forall i\in[n] \end{array} minxXmaxi[n]fi(x,yi(x))s.t. yi(x)=argminyigi(x,yi),i[n]
    其中,外层目标 f i f_i fi 衡量任务 i i i 的损失(如测试集损失),内层目标 g i g_i gi 对应任务特定参数的训练损失。目标是通过优化共享参数 x x x,最小化所有任务的最坏情况损失。

研究目标

  1. 设计高效的单循环算法以解决非凸-强凸双层优化问题。
  2. 保证算法收敛到一阶稳定点,理论分析收敛速度与泛化误差。
  3. 验证框架在元学习、表示学习等任务中的优越性。

2. 关键假设

  1. 外层函数性质

    • f i ( x , y ) f_i(x,y) fi(x,y) 关于 y y y 满足Lipschitz连续性与光滑性;
    • ℓ i ( x ) = f i ( x , y i ⋆ ( x ) ) \ell_i(x)=f_i(x,y_i^\star(x)) i(x)=fi(x,yi(x)) μ ℓ \mu_\ell μ-弱凸函数( μ ℓ < 0 \mu_\ell < 0 μ<0)。
  2. 内层函数性质

    • g i ( x , y ) g_i(x,y) gi(x,y) 关于 y y y μ g \mu_g μg-强凸且二阶光滑;
    • 内层解 y i ⋆ ( x ) y_i^\star(x) yi(x) 关于 x x x 满足Lipschitz连续性。
  3. 随机梯度估计

    • 内层梯度估计 h g k , i h_g^{k,i} hgk,i 无偏且方差有界;
    • 外层梯度估计 h x k h_x^k hxk 含可控偏差项 B k B_k Bk ∥ B k ∥ ≤ b k \|B_k\| \leq b_k Bkbk)。

3. 算法设计(MORBiT)

核心思想:单循环、双时间尺度梯度下降-上升(GDA)框架,同步更新共享参数 x x x、任务参数 y i y_i yi 与权重 λ \lambda λ

步骤

  1. 内层更新:对每个任务 i i i,沿 h g k , i h_g^{k,i} hgk,i g i g_i gi 的随机梯度)更新 y i y_i yi
    y k + 1 i = y k i − β h g k , i y_{k+1}^i = y_k^i - \beta h_g^{k,i} yk+1i=ykiβhgk,i
  2. 外层更新
    • 沿加权梯度 h x k h_x^k hxk(近似 ∇ x F ( x , y , λ k ) \nabla_x F(x,y,\lambda_k) xF(x,y,λk))更新 x x x
      x k + 1 = proj X ( x k − α h x k ) x_{k+1} = \text{proj}_\mathcal{X}\left(x_k - \alpha h_x^k\right) xk+1=projX(xkαhxk)
    • 沿 h λ k h_\lambda^k hλk(外层损失向量)更新权重 λ \lambda λ
      λ k + 1 = proj Δ n ( λ k + γ h λ k ) \lambda_{k+1} = \text{proj}_{\Delta_n}\left(\lambda_k + \gamma h_\lambda^k\right) λk+1=projΔn(λk+γhλk)

时间尺度选择

  • 步长 α = O ( K − 3 / 5 ) \alpha = \mathcal{O}(K^{-3/5}) α=O(K3/5), β = O ( K − 2 / 5 ) \beta = \mathcal{O}(K^{-2/5}) β=O(K2/5), γ = O ( K − 3 / 5 n − 1 / 2 ) \gamma = \mathcal{O}(K^{-3/5}n^{-1/2}) γ=O(K3/5n1/2),确保 y i y_i yi 更新快于 x x x λ \lambda λ

4. 定理描述

定理1(收敛性)
在关键假设下,MORBiT算法生成的解 ( x ˉ , y ˉ i , λ ˉ ) (\bar{x}, \bar{y}_i, \bar{\lambda}) (xˉ,yˉi,λˉ) 满足:

  1. 内层收敛
    E [ max ⁡ i ∥ y ˉ i − y i ⋆ ( x ˉ ) ∥ 2 ] ≤ O ( n K − 2 / 5 ) \mathbb{E}\left[\max_i \|\bar{y}_i - y_i^\star(\bar{x})\|^2\right] \leq \mathcal{O}\left(\sqrt{n} K^{-2/5}\right) E[imaxyˉiyi(xˉ)2]O(n K2/5)
  2. 外层最优性间隙
    max ⁡ λ E [ F ( x ˉ , λ ) ] − E [ F ( x ˉ , λ ˉ ) ] ≤ O ( n K − 2 / 5 ) \max_\lambda \mathbb{E}[F(\bar{x},\lambda)] - \mathbb{E}[F(\bar{x},\bar{\lambda})] \leq \mathcal{O}\left(\sqrt{n} K^{-2/5}\right) λmaxE[F(xˉ,λ)]E[F(xˉ,λˉ)]O(n K2/5)
  3. 稳定性条件
    E [ ∥ x ^ ( x ˉ ) − x ˉ ∥ 2 ] ≤ O ( n K − 2 / 5 ) \mathbb{E}\left[\|\hat{x}(\bar{x}) - \bar{x}\|^2\right] \leq \mathcal{O}\left(\sqrt{n} K^{-2/5}\right) E[x^(xˉ)xˉ2]O(n K2/5)

解释与Remark

  • 收敛速率由任务数 n n n 和迭代次数 K K K 共同主导,适用于高维多任务场景。
  • n = 1 n=1 n=1 时,退化为经典双层优化算法TTSA的收敛速率 O ( K − 2 / 5 ) \mathcal{O}(K^{-2/5}) O(K2/5)
  • 通过加权投影保证 λ \lambda λ 的收敛,避免任务权重发散导致的次优解。

5. 贡献与创新

  1. 理论框架创新
    • 首次提出min-max双层多目标优化形式化模型,统一元学习、表示学习等任务中的鲁棒性需求。
  2. 算法设计
    • 提出单循环双时间尺度算法MORBiT,支持异构任务参数维度,优于传统双循环方法。
  3. 理论分析突破
    • 在非凸-强凸假设下,证明收敛速率 O ( n K − 2 / 5 ) \mathcal{O}(\sqrt{n}K^{-2/5}) O(n K2/5),扩展了TTSA和TR-MAML的结论;
    • 给出基于Rademacher复杂度的泛化误差界,证明任务凸组合下的泛化能力。

6. 总结与未来研究方向

总结
本文通过min-max双层优化框架,解决了多任务学习中鲁棒性与泛化的平衡问题。MORBiT算法在理论和实验上均优于现有方法,为安全关键型应用提供了新思路。

未来方向

  1. 扩展理论:研究非强凸内层问题(如超参数优化中的非凸性)的收敛性。
  2. 大规模任务:设计分布式算法以降低 n \sqrt{n} n 对收敛速率的负面影响。
  3. 应用拓展:将框架应用于对抗鲁棒性、联邦学习中的异构设备优化等场景。
  4. 自适应步长:结合自适应学习率策略(如Adam)提升实际收敛速度。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值