大模型的使用
可以直接向大模型提出需求,就能获得答复。
这里涉及到怎么询问大模型,也就是提示词工程。
大模型的训练
大模型的训练整体分为三个阶段:
预训练、SFT(监督微调)和RLHF(基于人类反馈的的强化学习)
预训练:训练模型的通用能力。
SFT:让模型在特定领域上学习到领域的专业知识。
RLHF:可以进行人为干预模型的训练。通过人为的修正,让模型在生成答案时更符合人类的意图偏好。
大模型的特点
规模和参数量大:通过庞大的规模来捕获复杂的数据模式,使得它们能够理解和生成丰富的信息。
适应性和灵活性:可以通过微调或者少量样本的学习来适配下游任务。
广泛数据集和预训练:使用大量且多样化的数据进行预训练以学习广泛的知识表示,能够掌握这些数据的通用特征。
计算资源需求大:算力和资源的要求较高,比如数据存储、硬件设施、训练时间等等。
大模型的分类
大语言模型(LLM)
专注于自然语言处理(NLP),旨在处理语言、文章、对话等自然语言文本。经过大规模的文本数据集训练,可以捕获语言的复杂性,包括语法、语义、语境以及其中的文化和社会知识。
典型应用:文本生成、文本分类、机器翻译、问答系统、对话系统等
常见大模型:GPT系列、通义千问、文心一言、智谱