大语言模型【基础】(一)使用、训练、特点、分类和工作流程

大模型的使用

        可以直接向大模型提出需求,就能获得答复。

        这里涉及到怎么询问大模型,也就是提示词工程。

大模型的训练

        大模型的训练整体分为三个阶段:

                预训练、SFT(监督微调)和RLHF(基于人类反馈的的强化学习)

        预训练:训练模型的通用能力。

        SFT:让模型在特定领域上学习到领域的专业知识。

        RLHF:可以进行人为干预模型的训练。通过人为的修正,让模型在生成答案时更符合人类的意图偏好。

大模型的特点

        规模和参数量大:通过庞大的规模来捕获复杂的数据模式,使得它们能够理解和生成丰富的信息。

        适应性和灵活性:可以通过微调或者少量样本的学习来适配下游任务。

        广泛数据集和预训练:使用大量且多样化的数据进行预训练以学习广泛的知识表示,能够掌握这些数据的通用特征。

        计算资源需求大:算力和资源的要求较高,比如数据存储、硬件设施、训练时间等等。

大模型的分类

        大语言模型(LLM)

        专注于自然语言处理(NLP),旨在处理语言、文章、对话等自然语言文本。经过大规模的文本数据集训练,可以捕获语言的复杂性,包括语法、语义、语境以及其中的文化和社会知识。

        典型应用:文本生成、文本分类、机器翻译、问答系统、对话系统等

        常见大模型:GPT系列、通义千问、文心一言、智谱

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值