大模型【进阶】(二)RLHF(Reinforcement Learning with Human Feedback 带有人类反馈的强化学习)

        RLHFReinforcement Learning with Human Feedback(带有人类反馈的强化学习)的缩写。它是一种结合了强化学习(RL)和人类反馈的训练方法,广泛应用于人工智能(AI)系统的训练,尤其是在训练大型语言模型(如 GPT 系列、ChatGPT)时取得了显著成功。

一. RLHF 的基本概念

强化学习(Reinforcement Learning,RL)是机器学习中的一个重要分支,其中智能体(Agent)通过与环境的交互来学习策略,使得其行为能够最大化某种奖励(reward)。然而,传统的强化学习通常需要环境能够给出明确的奖励信号,这在某些情况下是非常困难的,特别是在复杂的任务中。

RLHF 则通过结合人类的反馈来解决这个问题。具体来说,RLHF 允许机器学习算法从人类反馈中获取信息,而不需要明确的奖励信号。这样,模型可以通过人类提供的指导来学习如何执行任务。


二. RLHF 的工作流程

论文中给出的核心思想示意图

RLHF 的工作通常可以分为以下几个阶段:

阶段 1: 预训练

        

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值