「考研数学」

考研数学基础核心计算

1、函数求极限

一、无穷小的比较

1、已知 lim ⁡ x → x 0 f ( x ) = 0 , lim ⁡ x → x 0 g ( x ) = 0 \lim_{x \to x0} f(x) = 0, \lim_{x \to x0}g(x) = 0 limxx0f(x)=0,limxx0g(x)=0

(1) lim ⁡ x → x 0 f ( x ) g ( x ) = 0 , \lim_{x \to x0} \frac{f(x)}{g(x)} = 0, limxx0g(x)f(x)=0,则称f(x)是g(x)在{x → x 0 \to x0 x0}时的高阶无穷小, 记作f(x) = o(g(x));

(2) lim ⁡ x → x 0 f ( x ) g ( x ) = ∞ \lim_{x \to x0} \frac{f(x)}{g(x)} = ∞ limxx0g(x)f(x)=,则称f(x)是g(x)在{x → x 0 \to x0 x0}时的低阶无穷小;

(3) lim ⁡ x → x 0 f ( x ) g ( x ) = k ≠ 0 \lim_{x \to x0} \frac{f(x)}{g(x)} = k \neq 0 limxx0g(x)f(x)=k=0,则称f(x)是g(x)在{x → x 0 \to x0 x0}时的同阶无穷小;\特别地, 若 lim ⁡ x → x 0 f ( x ) g ( x ) = 1 \lim _{x \to x0} \frac{f(x)}{g(x)} = 1 limxx0g(x)f(x)=1,则称f(x)是g(x)在{x → x 0 \to x0 x0}时的等阶无穷小。

二、常见等价无穷小(x → \to 0时)
  • x的1阶无穷小:
    (1) sin ⁡ x ∼ x \sin x \sim x sinxx
    (2) tan ⁡ x ∼ x \tan x \sim x tanxx
    (3 ) arcsin ⁡ x ∼ x )\arcsin x \sim x )arcsinxx
    (4) arctan ⁡ x ∼ x \arctan x \sim x arctanxx
    (5) ln ⁡ ( 1 + x ) ∼ x \ln(1 + x) \sim x ln(1+x)x
    (6) e x − 1 ∼ x e^{x} - 1 \sim x ex1x
    (7) a x − 1 ∼ x l n a a^{x} - 1 \sim xlna ax1xlna
    (8) 1 + x n − 1 ∼ 1 n x \sqrt[n]{1 + x} - 1 \sim \frac{1}{n}x n1+x 1n1x
    (9) ( 1 + x ) a − 1 ∼ a x (1 + x) ^ a - 1 \sim ax (1+x)a1ax

  • x的2阶无穷小:
    (1) 1 − cos ⁡ x ∼ 1 2 x 2 1 - \cos x \sim \frac{1}{2}x^2 1cosx21x2
    (2) 1 − cos ⁡ n x ∼ n 2 x 2 1 - \cos^nx \sim \frac{n}{2}x^2 1cosnx2nx2
    (3) ln ⁡ ( 1 + x ) − x ∼ 1 2 x 2 \ln(1 + x) - x \sim \frac{1}{2}x^2 ln(1+x)x21x2

  • x的3阶无穷小:
    (1) x − sin ⁡ x ∼ 1 6 x 3 x - \sin x \sim \frac{1}{6}x^3 xsinx61x3
    (2) tan ⁡ x − x ∼ 1 3 x 3 \tan x - x \sim \frac{1}{3}x^3 tanxx31x3
    (3) x − a r c s i n x ∼ 1 6 x 3 x - arcsinx \sim \frac{1}{6}x^3 xarcsinx61x3
    (4) arctan ⁡ x − x ∼ 1 3 x 3 \arctan x - x \sim \frac{1}{3}x^3 arctanxx31x3

三、等价替换原理

1、 若 α ∼ α ~ , β ∼ β ~ , 且 lim ⁡ β ~ α ~ 存在,则 lim ⁡ β α = lim ⁡ β ~ α ~ . 若\alpha \sim \tilde{\alpha} ,\beta \sim \tilde{\beta},且\lim{\frac{\tilde{\beta}}{\tilde{\alpha}}}存在,则\lim{\frac{\beta}{\alpha}} = \lim {\frac{\tilde{\beta}}{\tilde{\alpha}} }. αα~,ββ~,limα~β~存在,则limαβ=limα~β~.

证: lim ⁡ β α = lim ⁡ β β ~ ⋅ β ~ α ~ ⋅ α ~ α = lim ⁡ β ~ α ~ . 证:\lim{\frac{\beta}{\alpha}} = \lim{\frac{\beta}{\tilde{\beta}}\cdot\frac{\tilde{\beta}}{\tilde{\alpha}}\cdot\frac{\tilde{\alpha}}{\alpha}} = \lim{\frac{\tilde{\beta}}{\tilde{\alpha}}}. 证:limαβ=limβ~βα~β~αα~=limα~β~.

注意:等价定理说明等价无穷小只能用在相对于整个极限而言的乘除因子中,不可用在加减法中。

四、等价无穷小的充要条件

α ∼ β 的充分必要条件是 β = α + o ( α ) \alpha \sim \beta 的充分必要条件是\beta = \alpha + o(\alpha) αβ的充分必要条件是β=α+o(α)

五、泰勒公式
  • 1、麦克劳林公式(泰勒公式的特殊情形)
    f ( x ) = f ( 0 ) + f ′ ( 0 ) x + f ′ ′ ( 0 ) 2 ! x 2 + f ′ ′ ( 0 ) 3 ! x 3 + . . . . . . + f ( n ) ( 0 ) n ! x n + o ( x n ) f(x) = f(0) + {f}'(0)x + \frac{{f}''(0)}{2!}x^2 + \frac{{f}''(0)}{3!}x^3 + ...... + \frac{{f}^{(n)}(0)}{n!}{x}^n + o(x^n) f(x)=f(0)+f(0)x+2!f′′(0)x2+3!f′′(0)x3+......+n!f(n)(0)xn+o(xn)
  • 2、九个常见的泰勒公式
    (1) f ( x ) = sin ⁡ x = x − 1 6 x 3 + o ( x 3 ) f(x) = \sin x = x - \frac{1}{6}x^3 + o(x^3) f(x)=sinx=x61x3+o(x3)
    (2) f ( x ) = cos ⁡ x = 1 − 1 2 x 2 + 1 24 x 4 + o ( x 4 ) f(x) = \cos x = 1 - \frac{1}{2}x^2 + \frac{1}{24}x^4 + o(x^4) f(x)=cosx=121x2+241x4+o(x4)
    (3) f ( x ) = tan ⁡ x = x + 1 3 x 3 + o ( x 3 ) f(x) = \tan x = x + \frac{1}{3}x^3+o(x^3) f(x)=tanx=x+31x3+o(x3)
    (4) f ( x ) = arcsin ⁡ x = x + 1 6 x 3 + o ( x 3 ) f(x) = \arcsin x = x + \frac{1}{6}x^3 + o(x^3) f(x)=arcsinx=x+61x3+o(x3)
    (5) f ( x ) = arctan ⁡ x = x − 1 3 x 3 + o ( x 3 ) f(x) = \arctan x = x - \frac{1}{3}x^3 + o(x^3) f(x)=arctanx=x31x3+o(x3)
    (6) f ( x ) = e x = 1 + x + 1 2 x 2 + 1 6 x 3 + o ( x 3 ) f(x) = e ^x = 1 + x + \frac{1}{2}x^2 + \frac{1}{6}x^3 + o(x^3) f(x)=ex=1+x+21x2+61x3+o(x3)
    (7) f ( x ) = ln ⁡ ( 1 + x ) = x − 1 2 x 2 + 1 3 x 3 + o ( x 3 ) f(x) = \ln (1 + x) = x - \frac{1}{2}x^2 + \frac{1}{3}x^3 + o(x^3) f(x)=ln(1+x)=x21x2+31x3+o(x3)
    (8) f ( x ) = 1 1 − x = 1 + x + x 2 + x 3 + o ( x 3 ) f(x) = \frac{1}{1 - x} = 1 + x + x ^2 + x^3 + o(x^3) f(x)=1x1=1+x+x2+x3+o(x3)
    (9) f ( x ) = ( 1 + x ) α = 1 + α x + α ( α − 1 ) 2 ! x 2 + α ( α − 1 ) ( α − 2 ) 3 ! x 3 + o ( x 3 ) f(x) = (1 + x)^\alpha = 1 + \alpha x +\frac{ \alpha (\alpha - 1)}{2!}x^2 + \frac{\alpha (\alpha - 1) (\alpha - 2)}{3!}x^3+o(x^3) f(x)=(1+x)α=1+αx+2!α(α1)x2+3!α(α1)(α2)x3+o(x3)
六、极限运算法则
  • 定理1:有限个无穷小的和也是无穷小

  • 定理2:有界函数与无穷小的乘积是无穷小

  • 推论1:常数与无穷小的乘积是无穷小

  • 推论2:有限个无穷小的乘积是无穷小

  • 定理3:如果 lim ⁡ f ( x ) = A , lim ⁡ g ( x ) = B \lim f(x) = A, \lim g(x) = B limf(x)=A,limg(x)=B,那么
    (1) lim ⁡ [ f ( x ) ± lim ⁡ g ( x ) ] = A ± B \lim[f(x) \pm \lim g(x)] = A \pm B lim[f(x)±limg(x)]=A±B

    (2) l i m [ f ( x ) ⋅ g ( x ) ] = lim ⁡ f ( x ) ⋅ lim ⁡ g ( x ) = A ⋅ B lim[f(x) \cdot g(x)] = \lim f(x) \cdot \lim g(x) = A \cdot B lim[f(x)g(x)]=limf(x)limg(x)=AB

    (3)若又有B ≠ 0 , 则 lim ⁡ f ( x ) g ( x ) = lim ⁡ f ( x ) lim ⁡ g ( x ) = A B \neq 0, 则\lim \frac{f(x)}{g(x)} = \frac{\lim f(x)}{\lim g(x)} = \frac{A}{B} =0,limg(x)f(x)=limg(x)limf(x)=BA

    (4)若又有A,B不全为0,则 lim ⁡ f ( x ) g ( x ) = A B \lim f(x)^{g(x)} = A^{B} limf(x)g(x)=AB

  • 推论3:如果 lim ⁡ f ( x ) 存在 , 而 c 为常数 , 则 lim ⁡ [ c f ( x ) ] = c lim ⁡ f ( x ) . \lim f(x)存在,而c为常数,则\lim [cf(x)] = c \lim f(x). limf(x)存在,c为常数,lim[cf(x)]=climf(x).

  • 推论4:如果 lim ⁡ f ( x ) 存在 , 而 n 为正整数 , 则 lim ⁡ [ f ( x ) ] n = [ lim ⁡ f ( x ) ] n . \lim f(x)存在,而n为正整数,则\lim {[f(x)]}^n = {[\lim f(x)]}^n. limf(x)存在,n为正整数,lim[f(x)]n=[limf(x)]n.

  • 推论5(抓大头):
    ( 1 ) lim ⁡ P m ( x ) Q n ( x ) = lim ⁡ x → ∞ a 0 + a 1 x + a 2 x 2 + . . . + a m x m b 0 + b 1 x + b 2 x 2 + . . . + b n x n = { 0 , m < n a m b n , m = n ∞ , m > n . (1)\lim \frac{P_m(x)}{Q_n(x)} = \lim_{x\to\infty}\frac{a_0 + a_1x + a_2x^2 + ... + a_m x^m}{b_0+b_1x+b_2x^2+...+b_nx^n} = \left\{\begin{matrix} 0, m \lt n \\ \frac{a_m}{b_n} , m = n\\ \infty, m \gt n. \end{matrix}\right. (1)limQn(x)Pm(x)=xlimb0+b1x+b2x2+...+bnxna0+a1x+a2x2+...+amxm= 0,m<nbnam,m=n,m>n.
    ( 2 ) lim ⁡ x → 0 α m ( x ) β n ( x ) = lim ⁡ x → 0 α m x m + o ( x m ) b n x n + o ( x n ) = { ∞ , m < n , a m b n , m = n , a m , b n 均不为零 . 0 , m > n . (2)\lim_{x \to 0}\frac{\alpha_m(x)}{\beta_n(x)} = \lim_{x\to0}\frac{\alpha_mx^m + o(x^m)}{b_nx^n + o(x^n)} = \left\{\begin{matrix} \infty, m \lt n,\\ \frac{a_m}{b_n}, m = n, a_m,b_n均不为零.\\ 0, m \gt n. \end{matrix}\right. (2)x0limβn(x)αm(x)=x0limbnxn+o(xn)αmxm+o(xm)= ,m<n,bnam,m=n,am,bn均不为零.0,m>n.

  • 定理4:(复合函数的极限运算法则)设函数y = f[g(x)]是由函数u = g(x) 与函数y = f(u)复合而成,f(g(x))在点x_0的某去心邻域内有定义,若 lim ⁡ x → x 0 g ( x ) = u 0 , lim ⁡ u → u 0 f ( u ) = A \lim_{x\to{x_0}}g(x) = u_0,\lim_{u\to{u_0}}f(u) = A limxx0g(x)=u0,limuu0f(u)=A,且存在
    δ 0 > 0 \delta_0 \gt 0 δ0>0,当x ϵ U o ( x 0 , u 0 ) 时 , 有 g ( x ) ≠ u 0 \epsilon \stackrel{o}{U}(x_0, u_0)时,有g(x)\neq u_0 ϵUo(x0,u0),g(x)=u0,
    则 lim ⁡ x → x 0 f [ g ( x ) ] 则\lim_{x\to x_0}f[g(x)] limxx0f[g(x)] = lim ⁡ u → u 0 f ( u ) = A . \lim_{u\to u_0}f(u) = A. limuu0f(u)=A.

定理5:洛必达法则

(1) lim ⁡ x → x 0 f ( x ) g ( x ) 为 0 0 型或 ∞ ∞ 型 . \lim_{x \to x_0} \frac{f(x)}{g(x)}为\frac{0}{0}型或\frac{\infty}{\infty}型. limxx0g(x)f(x)00型或.
(2) 在 x = x 0 在x=x_0 x=x0的某去心邻域内,函数f(x),g(x)可导且 g ′ ( x ) ≠ 0. {g}'(x)\neq0. g(x)=0.
(3) lim ⁡ x → x 0 f ′ ( x ) g ′ ( x ) 存在或为无穷大 . \lim_{x\to x0}\frac{{f}'(x)}{{g}'(x)}存在或为无穷大. limxx0g(x)f(x)存在或为无穷大.

七、函数极限通法
求解极限的步骤:
  • (1)代入x的极限值,分析极限的类型和可使用的化简

  • (2)化简:

  • 1、根式有理化

  • 2、提(约)公因子

  • 3、计算非零因子

  • 4、等价无穷小替换

  • 5、拆分极限存在的项

  • 6、变量替换(尤其是倒代换)

  • 7、幂指函数指数化
    (3) 求值:

  • 1、洛必达法则

  • 2、泰勒公式

2、函数求导数

一、导数的定义
1、函数变化率

(1) f ′ ( x 0 ) = lim ⁡ Δ x → 0 f ( x 0 + Δ x ) − f ( x 0 ) Δ x {f}'(x_0) = \lim_{\Delta x \to 0} \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x} f(x0)=limΔx0Δxf(x0+Δx)f(x0)

(2) f ′ ( x 0 ) = lim ⁡ x → x 0 f ( x + x 0 ) − f ( x 0 ) x − x 0 {f}'(x_0) = \lim_{x \to x_0}\frac{f(x+x_0) - f(x_0)}{x - x_0} f(x0)=limxx0xx0f(x+x0)f(x0)

2、导数的几何意义
  • (1)切线的斜率

  • (2)切线方程:
    y − f ( x 0 ) = f ′ ( x 0 ) ( x − x 0 ) y - f(x_0) = {f}'(x_0)(x - x_0) yf(x0)=f(x0)(xx0)

  • (3)法线方程:
    y − f ( x 0 ) = − 1 f ′ ( x 0 ) ( x − x 0 ) y - f(x_0) = -\frac{1}{{f}'(x_0)}(x - x_0) yf(x0)=f(x0)1(xx0)

二、各类函数求导
  • 1、基本求导公式与四则运算
  • 2、复合函数求导
  • 3、隐函数求导
  • 4、参数方程求导
  • 5、反函数求导
  • 6、高阶导数
定积分
一、定积分的性质
1、线性性质

(1) ∫ a b [ f ( x ) + g ( x ) ] d x = ∫ a b f ( x ) d x = ∫ a b g ( x ) d x \int_{a}^{b}[f(x) + g(x)]\mathrm{d}x = \int_{a}^{b}f(x) \mathrm{d} x = \int_{a}^{b}g(x) \mathrm{d} x ab[f(x)+g(x)]dx=abf(x)dx=abg(x)dx

(2) ∫ a b f ( x ) d x = ∫ a c f ( x ) d x + ∫ c b f ( x ) d x \int_{a}^{b} f(x)\mathrm{d}x= \int_{a}^{c} f(x)\mathrm{d}x+ \int_{c}^{b}f(x)\mathrm{d}x abf(x)dx=acf(x)dx+cbf(x)dx

2、不等式性质

( 1 ) 若 f ( x ) ≤ g ( x ) 且 f ( x ) ≠ g ( x ) , 则 ∫ a b f ( x ) d x < ∫ a b g ( x ) d x (1)若f(x)\le g(x) 且f(x)\neq g(x),则\int_{a}^{b}f(x)\mathrm{d}x \lt \int_{a}^{b}g(x)\mathrm{d}x (1)f(x)g(x)f(x)=g(x),abf(x)dx<abg(x)dx
( 2 ) 若 m ≤ f ( x ) ≤ M , 则 m ( b − a ) ≤ ∫ a b f ( x ) d x ≤ M ( b − a ) . (2)若m \le f(x) \le M, 则m(b - a) \le \int_{a}^{b}f(x)\mathrm{d}x \le M(b - a). (2)mf(x)M,m(ba)abf(x)dxM(ba).
( 3 ) 积分中值定理 : ∫ a b f ( x ) d x = f ( ξ ) ⋅ ( b − a ) , ξ ε [ a , b ] (3)积分中值定理:\int_{a}^{b}f(x)\mathrm{d}x = f(\xi)\cdot(b - a) , \xi \varepsilon \left[ a, b\right ] (3)积分中值定理:abf(x)dx=f(ξ)(ba),ξε[a,b]
( 4 ) ∣ ∫ a b f ( x ) d x ∣ ≤ ∫ a b ∣ f ( x ) ∣ d x (4)\left | \int_{a}^{b} f(x)\mathrm{d}x\right| \le \int_{a}^{b} \left| f(x)\right|\mathrm{d} x (4) abf(x)dx abf(x)dx

3、对称性

( 1 ) 若 f ( x ) 为偶函数 , 则 ∫ − a a f ( x ) d x = 2 ⋅ ∫ 0 a f ( x ) d x (1) 若f(x)为偶函数,则\int_{-a}^{a}f(x)\mathrm{d}x = 2\cdot\int_{0}^{a}f(x)\mathrm{d} x (1)f(x)为偶函数,aaf(x)dx=20af(x)dx

( 2 ) 若 f ( x ) 为奇函数 , 则 ∫ − a a f ( x ) d x = 0. (2) 若 f(x)为奇函数,则\int_{-a}^{a}f(x)\mathrm{d}x = 0. (2)f(x)为奇函数,aaf(x)dx=0.

二、定积分的计算
1、牛顿莱布尼茨公式

∫ a b f ( x ) d x = F ( x ) ∣ a b = F ( b ) − F ( a ) \int_{a}^{b}f(x)\mathrm{d}x = \left .F(x)\right|_{a}^{b} = F(b) - F(a) abf(x)dx=F(x)ab=F(b)F(a)

2、定积分的换元法
3、定积分的分部积分法
4、区间在现公式:

∫ a b f ( x ) d x x = a + b − t ‾ ‾ ∫ a b f ( a + b − t ) d t = ∫ a b f ( a + b − x ) d x = 1 2 ∫ a b [ f ( x ) + f ( a + b − x ] d x \int_{a}^{b}f(x)\mathrm{d}x \underline{\underline{x = a + b - t}} \int_{a}^{b}f(a +b - t)\mathrm{d}t = \int_{a}^{b}f(a + b - x) \mathrm{d}x = \frac{1}{2}\int_{a}^{b}\left[ f(x) + f(a + b - x \right]\mathrm{d}x abf(x)dxx=a+btabf(a+bt)dt=abf(a+bx)dx=21ab[f(x)+f(a+bx]dx

5、华里士公式
三、不定积分
一、不定积分的概念与基本积分公式
1、概念

∫ f ( x ) d x = F ( x ) + C \int f(x) \mathrm{d}x = F(x) + C f(x)dx=F(x)+C

2、基本积分公式

( 1 ) C ′ = 0 (1){C}' = 0 (1)C=0

( 2 ) ∫ 0 d x = C (2)\int 0 \mathrm{d}x = C (2)0dx=C

( 3 ) ( x α ) ′ = α x α − 1 (3){(x ^ \alpha)}' = \alpha x^{\alpha - 1} (3)(xα)=αxα1

( 4 ) ∫ x α − 1 d x = 1 α ⋅ x a + c (4)\int x^{\alpha - 1}\mathrm{d}x =\frac{1}{\alpha}\cdot x^a +c (4)xα1dx=α1xa+c

( 5 ) sin ⁡ ′ x = cos ⁡ x (5){\sin}'x = \cos x (5)sinx=cosx

( 6 ) ∫ cos ⁡ x d x = sin ⁡ x + c (6)\int \cos x \mathrm{d}x = \sin x + c (6)cosxdx=sinx+c

( 7 ) cos ⁡ ′ x = − sin ⁡ x (7){\cos }' x = -\sin x (7)cosx=sinx

( 8 ) ∫ sin ⁡ x d x = − cos ⁡ x + c (8)\int \sin x \mathrm{d}x = -\cos x + c (8)sinxdx=cosx+c

( 9 ) tan ⁡ ′ x = sec ⁡ 2 x (9){\tan}' x = {\sec} ^ 2 x (9)tanx=sec2x

( 10 ) ∫ sec ⁡ 2 x d x = tan ⁡ x + c (10)\int {\sec }^2 x \mathrm{d}x = \tan x + c (10)sec2xdx=tanx+c

( 11 ) ( cot ⁡ x ) ′ = − csc ⁡ 2 x (11){(\cot x)}' = -{\csc } ^ 2 x (11)(cotx)=csc2x

( 12 ) ∫ csc ⁡ 2 x d x = − cot ⁡ x + c (12)\int {\csc}^2 x \mathrm{d}x = -\cot x + c (12)csc2xdx=cotx+c

( 13 ) ( sec ⁡ x ) ′ = sec ⁡ x ⋅ tan ⁡ x (13){(\sec x)}' = \sec x \cdot \tan x (13)(secx)=secxtanx

( 14 ) ∫ sec ⁡ x ⋅ tan ⁡ x d x = sec ⁡ x + c (14)\int \sec x \cdot \tan x \mathrm{d}x = \sec x + c (14)secxtanxdx=secx+c

( 15 ) ( csc ⁡ x ) ′ = − csc ⁡ x ⋅ cot ⁡ x (15){(\csc x)}' = -\csc x \cdot \cot x (15)(cscx)=cscxcotx

( 16 ) ∫ csc ⁡ x ⋅ cot ⁡ x d x = − csc ⁡ x + c (16)\int \csc x \cdot \cot x \mathrm{d}x = -\csc x + c (16)cscxcotxdx=cscx+c

( 17 ) ln ⁡ ∣ x ∣ ′ = 1 x (17){\ln \left | x\right |}' = \frac{1}{x} (17)lnx=x1

( 18 ) ∫ 1 x = ln ⁡ ∣ x ∣ + c (18)\int \frac{1}{x} = \ln \left | x \right | + c (18)x1=lnx+c

( 19 ) ( a x ) ′ = a x ⋅ ln ⁡ a ( a > 0 , a ≠ 1 ) (19){(a ^x)}' = a ^ x \cdot \ln a(a \gt 0, a \neq 1) (19)(ax)=axlna(a>0,a=1)

( 20 ) ∫ a x d x = 1 ln ⁡ a a x + c ( a > 0 , a ≠ 1 ) (20)\int a ^x \mathrm {d}x = \frac{1}{\ln a} a^x + c (a \gt 0, a \neq 1) (20)axdx=lna1ax+c(a>0,a=1)

( 21 ) ( e x ) ′ = e x (21){(e ^ x)}' = e ^ x (21)(ex)=ex

( 22 ) ∫ e x d x = e x + c (22)\int e ^x \mathrm {d}x = e ^x + c (22)exdx=ex+c

( 23 ) ( arcsin ⁡ x ) ′ = 1 1 − x 2 (23){(\arcsin x)}' = \frac{1}{\sqrt{1 - x^2}} (23)(arcsinx)=1x2 1

( 24 ) ∫ 1 1 − x 2 d x = arcsin ⁡ x + c (24)\int\frac{1}{\sqrt{1 - x ^ 2}}\mathrm{d}x = \arcsin x + c (24)1x2 1dx=arcsinx+c

( 25 ) ( arctan ⁡ x ) ′ = 1 1 + x 2 (25){(\arctan x)}' = \frac{1}{1 + x ^ 2} (25)(arctanx)=1+x21

( 26 ) ∫ 1 1 + x 2 d x = arctan ⁡ x + c (26)\int \frac{1}{1 + x^2}\mathrm{d}x = \arctan x + c (26)1+x21dx=arctanx+c

( 27 ) ( ln ⁡ ∣ x + x 2 + a ∣ ) ′ = 1 x 2 + a (27){(\ln \left | x + \sqrt{x ^ 2 + a}\right | )}' = \frac{1}{\sqrt{x ^ 2 + a}} (27)(ln x+x2+a )=x2+a 1

( 28 ) ∫ 1 x 2 + a = ln ⁡ ∣ x + x 2 + a ∣ + c (28)\int\frac{1}{\sqrt{x ^ 2 + a}} = \ln \left| x + \sqrt{x ^ 2 + a}\right| + c (28)x2+a 1=ln x+x2+a +c

二、四大积分方法
  • 1、第一类换元法(凑微分)

  • 2、第二类换元法(去根号)

  • 3、分部积分法

  • 4、有理函数积分法

三、三角有理函数积分
  • 0
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
【1】项目代码完整且功能都验证ok,确保稳定可靠运行后才上传。欢迎下载使用!在使用过程中,如有问题或建议,请及时私信沟通,帮助解答。 【2】项目主要针对各个计算机相关专业,包括计科、信息安全、数据科学与大数据技术、人工智能、通信、物联网等领域的在校学生、专业教师或企业员工使用。 【3】项目具有较高的学习借鉴价值,不仅适用于小白学习入门进阶。也可作为毕设项目、课程设计、大作业、初期项目立项演示等。 【4】如果基础还行,或热爱钻研,可基于此项目进行二次开发,DIY其他不同功能,欢迎交流学习。 【注意】 项目下载解压后,项目名字和项目路径不要用中文,否则可能会出现解析不了的错误,建议解压重命名为英文名字后再运行!有问题私信沟通,祝顺利! 基于C语言实现智能决策的人机跳棋对战系统源码+报告+详细说明.zip基于C语言实现智能决策的人机跳棋对战系统源码+报告+详细说明.zip基于C语言实现智能决策的人机跳棋对战系统源码+报告+详细说明.zip基于C语言实现智能决策的人机跳棋对战系统源码+报告+详细说明.zip基于C语言实现智能决策的人机跳棋对战系统源码+报告+详细说明.zip基于C语言实现智能决策的人机跳棋对战系统源码+报告+详细说明.zip基于C语言实现智能决策的人机跳棋对战系统源码+报告+详细说明.zip基于C语言实现智能决策的人机跳棋对战系统源码+报告+详细说明.zip基于C语言实现智能决策的人机跳棋对战系统源码+报告+详细说明.zip基于C语言实现智能决策的人机跳棋对战系统源码+报告+详细说明.zip基于C语言实现智能决策的人机跳棋对战系统源码+报告+详细说明.zip基于C语言实现智能决策的人机跳棋对战系统源码+报告+详细说明.zip基于C语言实现智能决策的人机跳棋对战系统源码+报告+详细说明.zip
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

董陌

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值