sklearn中GradientBoostingClassifier bug:ValueError: Input contains NaN, infinity or a value too large sklearn的GradientBoostingClassifier真的支持缺失值处理吗???
ValueError: cannot convert float NaN to integer 文章目录问题复现报错解决方案问题复现import numpy as npa = np.arange(10)a[1] = np.nan报错ValueError: cannot convert float NaN to integer解决方案a.astype(float)a[1] = np.nan先把a转化成float类型的即可。
git pull 报错 error: cannot pull with rebase: You have unstaged changes git pull报错error: cannot pull with rebase: You have unstaged changes.error: please commit or stash them.解决办法把没有提交的修改全都提交了,然后重新执行git pull
TypeError: ‘coo_matrix‘ object is not subscriptable 错误复现from scipy.sparse import coo_matriximport numpy as nprow = np.array([0, 3, 1, 0])col = np.array([0, 3, 1, 2])data = np.array([4, 5, 7, 9])coo = coo_matrix((data, (row, col)), shape=(4, 4))element = coo[0, 0]报错TypeError: 'coo_matrix' object
2012-1区top-JASA-Optimal detection of changepoints with a linear computational cost 注意标黄的三句话。从第一句话中感觉到作者想研究的是线性惩罚(linear penalty),但是在第二句话里边错写成了linear cost function。为什么有以上揣测呢?因为结合第二、三句话和section 3的原文发现说的都是线性惩罚(linear penalty)。所以严重怀疑作者笔误了。...
特征既有类型(nominal)变量又有数据/数字(ratio)变量的时候,该怎么进行特征处理呢?不妨试试sklearn的DictVectorizer 直接上代码,然后就着代码分析>>> from sklearn.feature_extraction import DictVectorizer>>> v = DictVectorizer(sparse=False)>>> D = [{'性别': '男', '年龄': 2}, {'性别': '女', '年龄': 23}]>>> X = v.fit_transform(D)>>> Xarray([[ 2.,
最大信息系数(maximal information coefficient,MIC)核心程序之OptimizeXAxis /* * Returns the normalized MI scores. * * Parameters * dx (IN) : x-data sorted in increasing order by dx-values * dy (IN) : y-data sorted in increasing order by dx-values * n (IN) : number of elements in dx and dy * Q_map (IN) : the map Q c
最大信息系数(maximal information coefficient,MIC)核心程序之GetClumpsPartition /* * Returns the map P: D -> {0, ...,p-1}. * * Parameters * dx (IN) : x-data sorted in increasing order * n (IN) : number of elements of dx * Q_map (IN) : the map Q computed by EquipartitionYAxis sorted in * increasing order
最大信息系数(maximal information coefficient,MIC)核心程序 /* * Libmine core library. * * This code is written by Davide Albanese <davide.albanese@gmail.com> * and Michele Filosi <filosi@fbk.eu>. * * Copyright (C) 2012-2016 Davide Albanese, Copyright (C) 2012 Michele * Filosi, Copyright (C) 2012