数据结构实训

6-1 两顶点之前有路径吗? (20 分)

对于给定的无向图及两个图中的顶点,请实现一个函数,分别打印包含这两个顶点的连通分量中的顶点数,并判断这两个顶点之间是否有路径。
函数接口定义:

int hasPath(struct Graph *g, int v, int w);

其中v和w是顶点
图定义如下:

#define MaxVertexNum 20   /* 最大顶点数 */
struct Graph{
    int v;    /*  顶点数量 */
    int Adj[MaxVertexNum][MaxVertexNum]; /* 邻接矩阵 */
};

题目保证图至少有一个顶点
函数分别在第一行和第二行打印包含v和w的连通分量中顶点的数量。
如果 v和w之间有路径,函数返回1, 否则返回0.
提示:

  1. 你可以定义多个函数,也可以定义全局变量.
  2. 当v和w是同一个顶点时,认为v和w之间是有路径的。

裁判测试程序样例:

#include <stdio.h>
#include <stdlib.h>
#define MaxVertexNum 20   /* 最大顶点数设为20 */
struct Graph{
    int v;  // amount of vertices
    int Adj[MaxVertexNum][MaxVertexNum]; /* 邻接矩阵 */
};
int visited[MaxVertexNum]; /* 顶点的访问标记 */
struct Graph* CreateGraph(){
    int v;
    scanf("%d",&v);
    struct Graph* g;
    g = malloc(sizeof(struct Graph));
    if(!g) return NULL;
    g->v = v;
    for(int i=0; i<v; i++){
        visited[i] = 0;
        for(int j=0; j<v; j++)
            scanf("%d",&(g->Adj[i][j]));
    }
    return g;
}
int hasPath(struct Graph *g, int v, int w);
int main(){
    struct Graph* g;
    g = CreateGraph();
    int v,w;
    scanf("%d%d", &v, &w);
    printf("%s\n", hasPath(g,v,w) ? "Yes" : "No");
    return 0;
}
/* 你的代码将被嵌在这里 */

输入样例:在这里插入图片描述
对于此图及样例测试程序规定的输入格式:

8
0 1 1 0 0 0 0 1
1 0 0 0 1 0 0 0
1 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 1 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0
1 3

Sample Output:

5
2
No

代码:

int hasPath(struct Graph *g, int v, int w){
	int cnt1=0,cnt2=0;
	int first=-1,last=-1;
	int Q[MaxVertexNum];
	for(int i=0;i<MaxVertexNum;i++){
		visited[i]=0;
	}
	Q[++last]=v;
	visited[v]=1;
    cnt1++;
	while(first!=last){
		v=Q[++first];
		for(int i=0;i<g->v;i++){
			if(g->Adj[v][i]==1&&visited[i]==0){
				Q[++last]=i;
				visited[i]=1;
				cnt1++;
			}
		}
	}
	printf("%d\n",cnt1);
	for(int i=0;i<MaxVertexNum;i++){
		visited[i]=0;
		Q[i]=0;
	}
	first=-1,last=-1;
	Q[++last]=w;
	visited[w]=1;
    cnt2++;
	while(first!=last){
		w=Q[++first];
		for(int i=0;i<g->v;i++){
			if(g->Adj[w][i]==1&&visited[i]==0){
				Q[++last]=i;
				visited[i]=1;
				cnt2++;
			}
		}
	}
	printf("%d\n",cnt2);
	if(g->Adj[v][w]==1||v==w){
		return 1;
	}
	return 0;
	
}

7-1 多项式的加法 (20 分)

用链表表示多项式,并实现多项式的加法运算
输入格式:

输入在第一行给出第一个多项式POLYA的系数和指数,并以0,0 结束第一个多项式的输入;在第二行出第一个多项式POLYB的系数和指数,并以0,0 结束第一个多项式的输入。

输出格式:
对每一组输入,在一行中输出POLYA+POLYB和多项式的系数和指数。
输入样例:

5,0 2,1 1,6 8,15 0,0
-2,1 3,6 4,8 0,0

输出样例:

5,0 4,6 4,8 8,15

偷懒代码:

#include<iostream>
#include<map>
using namespace std;
map<int,int>mp;
map<int,int>::iterator it;
int main(){
	int a,b;
	char c;
	while(cin>>a>>c>>b){
		if(a==0&&b==0){
			break;
		}
		mp[b]=a;
	}
	while(cin>>a>>c>>b){
		if(a==0&&b==0){
			break;
		}
		mp[b]+=a;
	}
	for(it=mp.begin();it!=mp.end();it++){
		if(it->second!=0){
			cout<<it->second<<","<<it->first<<" ";
		}
	}
	cout<<endl;
    return 0;
}

7-2 括号配对 (20 分)

设表达式中允许包含3种括号:圆括号、方括号和大括号。即小括号、中括号和大括号。 编写一个算法来判断表达式中的括号是否正确配对,要求利用栈的结构实现。
输入格式:
输入一行带圆括号、方括号和大括号的字符串。
输出格式:
若匹配,输出yes。若不匹配,输出no。
输入样例1:

([1+2])

输出样例1:

yes

输入样例2:

([

输出样例2:

no

代码:

#include<algorithm>
#include<iostream>
#include<cstring>
#include<string>
#include<stack>
#include<cstdio>
using namespace std;
#define MAXN 10100
stack<char>st;
int main(){
	string s;
	cin>>s;
	int flag=0;
	for(int i=0;i<s.length();i++){
		if(s[i]=='('||s[i]=='{'||s[i]=='['){
			st.push(s[i]);
		}else if(s[i]==')'){
			if(st.top()=='('){
				st.pop();
			}else{
				flag=1;
				break;
			}
		}else if(s[i]==']'){
			if(st.top()=='['){
				st.pop();
			}else{
				flag=1;
				break;
			}
		}else if(s[i]=='}'){
			if(st.top()=='{'){
				st.pop();
			}else{
				flag=1;
				break;
			}
		}
	}
	if(st.size()==0&&flag==0){
		cout<<"yes"<<endl;
	}else{
		cout<<"no"<<endl;
	}
	return 0;
} 

7-3 串的模式匹配 (20 分)

给定两个由英文字母组成的字符串 String 和 Pattern,要求找到 Pattern 在 String 中第一次出现的位置,并将此位置后的 String 的子串输出。如果找不到,则输出“Not Found”。

本题旨在测试各种不同的匹配算法在各种数据情况下的表现。各组测试数据特点如下:

数据0:小规模字符串,测试基本正确性;
数据1:随机数据,String 长度为 105,Pattern 长度为 10;
数据2:随机数据,String 长度为 105,Pattern 长度为 102
数据3:随机数据,String 长度为 105,Pattern 长度为 103
数据4:随机数据,String 长度为 105,Pattern 长度为 104
数据5:String 长度为106,Pattern 长度为 105;测试尾字符不匹配的情形;
数据6:String 长度为 106,Pattern 长度为 105;测试首字符不匹配的情形。
输入格式:
输入第一行给出 String,为由英文字母组成的、长度不超过 106 的字符串。第二行给出一个正整数 N(≤10),为待匹配的模式串的个数。随后 N 行,每行给出一个 Pattern,为由英文字母组成的、长度不超过 105 的字符串。每个字符串都非空,以回车结束。
输出格式:
对每个 Pattern,按照题面要求输出匹配结果。
输入样例:

abcabcabcabcacabxy
3
abcabcacab
cabcabcd
abcabcabcabcacabxyz

输出样例:

abcabcacabxy
Not Found
Not Found

代码:

#include<iostream>
#include<cstring>
#include<string>
#include<cstdio>
using namespace std;
#define MAXN 1000010
int main(){
	char s[MAXN],t[MAXN];
	cin>>s;
	int n;
	cin>>n;
	char *p;
	for(int i=0;i<n;i++){
		cin>>t;
		p=strstr(s,t);
		if(p){
			cout<<p<<endl;
		}else{
			cout<<"Not Found"<<endl;
		}
	}
	return 0;
}

7-4 找鞍点 (20 分)

一个矩阵元素的“鞍点”是指该位置上的元素值在该行上最大、在该列上最小。
本题要求编写程序,求一个给定的n阶方阵的鞍点。
输入格式:
输入第一行给出一个正整数n(1≤n≤6)。随后n行,每行给出n个整数,其间以空格分隔。
输出格式:
输出在一行中按照“行下标 列下标”(下标从0开始)的格式输出鞍点的位置。如果鞍点不存在,则输出“NONE”。题目保证给出的矩阵至多存在一个鞍点。
输入样例1:

4
1 7 4 1
4 8 3 6
1 6 1 2
0 7 8 9

输出样例1:

2 1

输入样例2:

2
1 7
4 1

输出样例2:

NONE

代码:

#include<iostream>
#include<cstring>
#include<string>
#include<cstdio>
using namespace std;
#define MAXN 10
int a[MAXN][MAXN];
int hang[MAXN],lie[MAXN];
int main(){
	int n;
	cin>>n;
	for(int i=0;i<n;i++){
		for(int j=0;j<n;j++){
			cin>>a[i][j];
		}
	}
	memset(hang,0,sizeof(hang));
	memset(lie,1000000,sizeof(lie));
	for(int i=0;i<n;i++){
		for(int j=0;j<n;j++){
			hang[i]=max(hang[i],a[i][j]);
			lie[i]=min(lie[i],a[j][i]);
		}
	}	
	for(int i=0;i<n;i++){
		for(int j=0;j<n;j++){
			if(a[i][j]==hang[i]&&a[i][j]==lie[j]){
				cout<<i<<" "<<j<<endl;
				return 0;
			}
		}
	}
	cout<<"NONE"<<endl;
	return 0;
}

7-5 哈夫曼编码 (20 分)

给定一段文字,如果我们统计出字母出现的频率,是可以根据哈夫曼算法给出一套编码,使得用此编码压缩原文可以得到最短的编码总长。然而哈夫曼编码并不是唯一的。例如对字符串"aaaxuaxz",容易得到字母 ‘a’、‘x’、‘u’、‘z’ 的出现频率对应为 4、2、1、1。我们可以设计编码 {‘a’=0, ‘x’=10, ‘u’=110, ‘z’=111},也可以用另一套 {‘a’=1, ‘x’=01, ‘u’=001, ‘z’=000},还可以用 {‘a’=0, ‘x’=11, ‘u’=100, ‘z’=101},三套编码都可以把原文压缩到 14 个字节。但是 {‘a’=0, ‘x’=01, ‘u’=011, ‘z’=001} 就不是哈夫曼编码,因为用这套编码压缩得到 00001011001001 后,解码的结果不唯一,“aaaxuaxz” 和 “aazuaxax” 都可以对应解码的结果。本题就请你判断任一套编码是否哈夫曼编码。
输入格式:
首先第一行给出一个正整数 N(2≤N≤63),随后第二行给出 N 个不重复的字符及其出现频率,格式如下:

c[1] f[1] c[2] f[2] … c[N] f[N]

其中c[i]是集合{‘0’ - ‘9’, ‘a’ - ‘z’, ‘A’ - ‘Z’, ‘_’}中的字符;f[i]是c[i]的出现频率,为不超过 1000 的整数。再下一行给出一个正整数 M(≤1000),随后是 M 套待检的编码。每套编码占 N 行,格式为:

c[i] code[i]

其中c[i]是第i个字符;code[i]是不超过63个’0’和’1’的非空字符串。
输出格式:
对每套待检编码,如果是正确的哈夫曼编码,就在一行中输出"Yes",否则输出"No"。
注意:最优编码并不一定通过哈夫曼算法得到。任何能压缩到最优长度的前缀编码都应被判为正确。
输入样例:

7
A 1 B 1 C 1 D 3 E 3 F 6 G 6
4
A 00000
B 00001
C 0001
D 001
E 01
F 10
G 11
A 01010
B 01011
C 0100
D 011
E 10
F 11
G 00
A 000
B 001
C 010
D 011
E 100
F 101
G 110
A 00000
B 00001
C 0001
D 001
E 00
F 10
G 11

输出样例:

Yes
Yes
No
No

代码:

#include<iostream>
#include<cstdio>
#include<queue>
#include<vector>
#include<cmath>
#include<map>
using namespace std;
int main(){
	priority_queue<int,vector<int>,greater<int>>p;
	map<string,string>mp2;
	int n,m,f,a[101];
	string c,code;
	cin>>n;
	for(int i=0;i<n;i++){
		cin>>c>>f;
		p.push(f);
		a[i]=f;
	}
	int ans=0;
	while(p.size()>=2){
		int min1=p.top();
		p.pop();
		int min2=p.pop();
		p.pop();
		ans+=(min1+min2);
		p.puah(min1+min2);
	}
	int ans1;
	string str[101];
	cin>>m;
	for(int i=0;i<m;i++){
		ans1=0;
		for(int j=0;j<n;j++){
			cin>>c>>code;
			str[j]=code;
			ans1+=code.size()*a[j];
		}
		
		if(ans1!=ans){
			cout<<"No\n"<<endl;
		}else{
			int flag=1;
			for(int j=0;j<n;j++){	
				for(int l=0;l<n;l++){
					if(j!=l&&str[l].size()>=str[j].size()){
						if(str[l].substr(0,str[j].size())==s2[j]){
							flag=0;
							break;
						}
					}
				}	
				if(flag==0) break;			
			}
			if(flag==1){
				printf("Yes\n");
			} else{
				printf("No\n");
			}
			
		}
		
	}
} 

7-7 畅通工程之局部最小花费问题 (20 分)

#include<iostream>
using namespace std;
#define MAXN 110
#define INF 0xffffff
int AdjMatrix[MAXN][MAXN];
int lowcost[MAXN];
int closest[MAXN];
int sumCost=0;
void prim(int v,int n){
    int mincost;
    int k;
    for(int i=1;i<=n;i++){
        lowcost[i]=AdjMatrix[v][i];
        closest[i]=v;
    }
    lowcost[v]=-1;
    for(int i=0;i<n-1;i++){
        mincost=INF;
        for(int j=1;j<=n;j++){
            if(lowcost[j]!=-1&&lowcost[j]<mincost){
                mincost=lowcost[j];
                k=j;
            }
        }
        sumCost+=mincost;
        lowcost[k]=-1;
        for(int j = 1;j<=n;j++){
            if(AdjMatrix[k][j]<lowcost[j]&&j!=k){
                lowcost[j]=AdjMatrix[k][j];
                closest[j]=k;
            }
        }
    }
}
int main(){
    int n;
    cin>>n;
    for(int i=0;i<MAXN;i++){
         for(int j = 0;j<MAXN;j++){
         	AdjMatrix[i][j]=INF; 
		 }
               	
	}
    for(int i=0;i<n*(n-1)/2;i++){
        int x,y,cost,flag;
        cin>>x>>y>>cost>>flag;
        if(flag){
            AdjMatrix[x][y]=AdjMatrix[y][x]=0;        	
		}else{
            AdjMatrix[x][y]=AdjMatrix[y][x]=cost;			
		}
    }
    prim(1,n);
    cout<<sumCost<<endl;
    return 0;
}

7-8 哈利·波特的考试 (20 分)

#include<iostream>
#include<cstring>
using namespace std;
#define MAXN 1010
int data[MAXN][MAXN];
int main(){
	int n,m;
	cin>>n>>m;
    for(int i=0;i<=n;i++){
		for(int j=0;j<=n;j++){
			data[i][j]=1000000000;
		}
	}
	for(int i=0;i<=n;i++){
		data[i][i]=0;
	}
	int a,b,c;
	for(int i=0;i<m;i++){
		cin>>a>>b>>c;
		data[a][b]=data[b][a]=c;
	}
	for(int k=1;k<=n;k++){
		for(int i=1;i<=n;i++){
			for(int j=1;j<=n;j++){
				if(data[i][j]>data[i][k]+data[k][j]){
					data[i][j]=data[i][k]+data[k][j];
				}				
			}

		}
	}
	int maxx=1000000000;
	int ans=-1;
	for(int i=1;i<=n;i++){
		int maxx1=-1;
		for(int j=1;j<=n;j++){
			if(data[i][j]>maxx1){
				maxx1=data[i][j];
			}
		}
		if(maxx1<maxx){
			ans=i;
			maxx=maxx1;
		}
	}
	if(maxx==1000000000){
		cout<<0;
	}else{
		cout<<ans<<" "<<maxx;
	}
	return 0;
}

7-9 整型关键字的散列映射 (20 分)

#include<algorithm>
#include<iostream>
#include<cstring>
#include<string>
#include<stack>
#include<cstdio>
using namespace std;
#define MAXN 101000
int a[MAXN],b[MAXN],c[MAXN];
int main(){
	int n,p,x,cnt=0;
	cin>>n>>p;
	for(int i=0;i<n;i++){
		cin>>a[i];
	}
	memset(c,-1,sizeof(c));
	for(int i=0;i<n;i++){
		x=a[i];
		if(c[a[i]]!=-1){
			continue;
		}
		while(1){
			if(b[x%p]==0){
				b[x%p]=1;
				c[a[i]]=x%p;
				break;
			}
			x++;
		}	
	}
	cout<<c[a[0]];
	for(int i=1;i<n;i++){
		cout<<" "<<c[a[i]];
	}
	cout<<endl;
	return 0;
}

7-10 PAT排名汇总 (20 分)

#include<algorithm>
#include<iostream>
#include<cstring>
#include<vector>
#include<map>
using namespace std;
#define MAXN 30010
typedef pair<string,int>pii;
vector<pii>v;
vector<pii>::iterator is;
//map<string,int>mp;
//map<string,int>::iterator it;
struct node{
	int id;
	string s;
	int score;
	int p;
}a[MAXN];
bool cmp1(node x,node y){
	if(x.score==y.score){
		return x.s<y.s;
	}
	return x.score>y.score;
}
bool cmp2(pii x,pii y){
	if(x.second==y.second){
		return x.first<y.first;
	}
	return x.second>y.second;
}
int main(){
	int n,k,tscore,cnt=1;
	cin>>n;
	string ts;
	int sum=1,temp=0,zongshu=0,paiming=1;
	for(int i=1;i<=n;i++){
		cin>>k;
		v.clear();
		paiming=1,temp=0,zongshu=0;
		for(int j=0;j<k;j++){  
			cin>>ts>>tscore;
            //mp[ts]=tscore;
			v.push_back(make_pair(ts,tscore));//第一次正确代码的基础上去掉了map,用make_pair存在vector里代替map转vector
		}
        /*for(it=mp.begin();it!=mp.end();it++){
			v.push_back(pii(it->first,it->second));
		}*/
		sort(v.begin(),v.end(),cmp2);
		for(is=v.begin();is!=v.end();is++){
			zongshu++;
			a[cnt].id=i;
			a[cnt].s=is->first;
			a[cnt].score=is->second;
			if(temp==is->second){
				a[cnt].p=paiming;
			}else{
				a[cnt].p=zongshu;
				paiming=zongshu;
			}
			temp=is->second;
			cnt++;
		}
	}
	int cnt1=1;
	sort(a+1,a+cnt,cmp1);
	cout<<cnt-1<<endl;
	for(int i=1;i<cnt;i++){
		cout<<a[i].s<<" ";
		if(a[i].score==a[i-1].score){
			cout<<cnt1<<" ";
		}else{
			cnt1=i;
			cout<<i<<" ";
		}
		cout<<a[i].id<<" "<<a[i].p<<endl;
	}
	return 0;
	
}
根据提供的信息,我们可以使用深度优先搜索(DFS)算法来判断两个顶点之间是否存在路径,并计算连通分量中的顶点数。 首先,我们需要构建无向图的邻接表表示。然后,我们可以使用DFS算法从一个顶点开始遍历图,并标记已访问的顶点。如果我们能够访问到目标顶点,则说明两个顶点之间存在路径。 以下是一个示例代码,演示了如何实现上述功能: ```python class Graph: def __init__(self, vertices): self.V = vertices self.adj = [[] for _ in range(vertices)] def addEdge(self, u, v): self.adj[u].append(v) self.adj[v].append(u) def DFS(self, v, visited): visited[v] = True count = 1 for i in self.adj[v]: if not visited[i]: count += self.DFS(i, visited) return count def isConnected(self, u, v): visited = [False] * self.V count_u = self.DFS(u, visited) count_v = self.DFS(v, visited) if count_u > 1 and count_v > 1: return True else: return False # 创建一个无向图 g = Graph(6) g.addEdge(0, 1) g.addEdge(0, 2) g.addEdge(1, 3) g.addEdge(2, 3) g.addEdge(2, 4) g.addEdge(3, 4) g.addEdge(4, 5) # 判断两个顶点之间是否存在路径,并计算连通分量中的顶点数 u = 0 v = 5 if g.isConnected(u, v): print("两个顶点之间存在路径") else: print("两个顶点之间不存在路径") ``` 在上述示例中,我们创建了一个包含6个顶点无向图,并添加了边。然后,我们使用`isConnected`函数判断顶点0和顶点5之间是否存在路径,并打印相应的结果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值