目标检测常用评价指标详解

🎀个人主页: https://zhangxiaoshu.blog.csdn.net
📢欢迎大家:关注🔍+点赞👍+评论📝+收藏⭐️,如有错误敬请指正!
💕未来很长,值得我们全力奔赴更美好的生活!

前言

目标检测是计算机视觉领域中的一项重要任务,旨在从图像或视频中检测并定位图像中存在的目标物体,并识别它们属于哪个类别。而目标检测任务中的评价指标对于评估算法性能、比较不同方法以及指导模型优化具有重要性,因此本文对目标检测任务中的相关评价指标进行介绍。



一、IOU和GIOU

1. IOU

IOU,即交并比(Intersection over Union),是目标检测中常用的一种评价指标,用于衡量检测框(bounding box)与真实目标框之间的重叠程度。它的计算方法如下:
在这里插入图片描述

假设有两个边界框,分别表示检测到的框(D)和真实目标框(G):

D:检测框,由左上角坐标 (x1, y1) 和右下角坐标 (x2, y2) 定义;

G:真实目标框,同样由左上角坐标 (x1’, y1’) 和右下角坐标 (x2’, y2’) 定义。

那么,交并比(IOU)的计算方法为:

  1. 计算两个边界框的交集面积(Intersection Area):

I n t e r s e c t i o n A r e a = m a x ( 0 , m i n ( x 2 , x 2 ′ ) − m a x ( x 1 , x 1 ′ ) ) × m a x ( 0 , m i n ( y 2 , y 2 ′ ) − m a x ( y 1 , y 1 ′ ) ) Intersection Area=max(0,min(x2,x2^{′})−max(x1,x1^{′} ))×max(0,min(y2,y2^{′} )−max(y1,y1^{′})) IntersectionArea=max(0,min(x2,x2)max(x1,x1))×max(0,min(y2,y2)max(y1,y1))

其中, m a x ( x 1 , x 1 ′ ) max(x1,x1^{′}) max(x1,x1) m a x ( y 1 , y 1 ′ ) max(y1,y1^{′}) max(y1,y1)分别表示两个矩形框的左上角的横坐标和纵坐标的较大值,即交集区域的左上角的坐标 m i n ( x 2 , x 2 ′ ) min(x2,x2^{′}) min(x2,x2) m i n ( y 2 , y 2 ′ ) min(y2,y2^{′}) min(y2,y2)分别表示两个矩形框的右下角的横坐标和纵坐标的较小值,即交集区域的右下角的坐标 m a x ( 0 , m i n ( x 2 , x 2 ′ ) − m a x ( x 1 , x 1 ′ ) ) max(0,min(x2,x2^{′})−max(x1,x1^{′} )) max(0,min(x2,x2

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

张小殊.

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值