💥💥💞💞欢迎来到本博客❤️❤️💥💥
🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。
⛳️座右铭:行百里者,半于九十。
📋📋📋本文目录如下:🎁🎁🎁
目录
⛳️赠与读者
👨💻做科研,涉及到一个深在的思想系统,需要科研者逻辑缜密,踏实认真,但是不能只是努力,很多时候借力比努力更重要,然后还要有仰望星空的创新点和启发点。当哲学课上老师问你什么是科学,什么是电的时候,不要觉得这些问题搞笑。哲学是科学之母,哲学就是追究终极问题,寻找那些不言自明只有小孩子会问的但是你却回答不出来的问题。建议读者按目录次序逐一浏览,免得骤然跌入幽暗的迷宫找不到来时的路,它不足为你揭示全部问题的答案,但若能让人胸中升起一朵朵疑云,也未尝不会酿成晚霞斑斓的别一番景致,万一它居然给你带来了一场精神世界的苦雨,那就借机洗刷一下原来存放在那儿的“躺平”上的尘埃吧。
或许,雨过云收,神驰的天地更清朗.......🔎🔎🔎
💥1 概述
基于Random-Forest的共享单车租赁预测研究是一个结合了机器学习和数据科学领域的实际应用项目。以下是对该研究的详细探讨:
一、研究背景
随着城市化进程的加快和环保意识的提升,共享单车作为一种绿色、便捷的出行方式,在全球范围内得到了广泛推广和应用。然而,如何有效管理和调度共享单车资源,以满足不同时间和地点的租赁需求,成为了一个亟待解决的问题。基于Random-Forest的共享单车租赁预测研究,旨在通过机器学习算法对共享单车租赁数据进行挖掘和分析,从而预测未来的租赁需求,为共享单车公司的运营和调度提供科学依据。
二、数据准备
1. 数据来源
共享单车租赁数据通常来源于共享单车公司的运营系统,包括用户骑行记录、天气信息、时间信息等。此外,还可以从公开的数据集如Kaggle等平台获取相关数据。
2. 数据特征
共享单车租赁预测模型的数据特征主要包括以下几类:
- 时间类特征:如日期、时间(小时)、季节、节假日、工作日/非工作日等。
- 天气类特征:如温度、湿度、风速、天气状况(晴、阴、雨、雪等)。
- 地点类特征:如起始站点、结束站点、区域人口密度等(如果数据可用)。
- 其他特征:如历史租赁量、促销活动、政策变化等。
3. 数据预处理
在数据准备阶段,需要进行数据清洗、缺失值处理、异常值检测与处理、数据变换(如对数变换)等步骤,以确保数据的质量和准确性。
三、模型构建
1. Random-Forest算法介绍
Random-Forest(随机森林)是一种集成学习算法,它通过构建多个决策树并将它们的预测结果进行汇总来提高整体模型的预测性能。随机森林中的每棵决策树都是基于随机选择的数据子集和特征子集进行训练的,这有助于降低模型的过拟合风险并提高泛化能力。
2. 模型参数设置
在构建随机森林模型时,需要设置一系列参数,如决策树的数量(n_estimators)、决策树的最大深度(max_depth)、分裂节点所需的最小样本数(min_samples_split)等。这些参数的选择对模型的性能有重要影响,通常需要通过交叉验证等方法进行调优。
3. 模型训练与评估
将处理好的数据划分为训练集和测试集,使用训练集数据训练随机森林模型,并使用测试集数据评估模型的性能。评估指标通常包括准确率、均方误差(MSE)、R平方得分等。
四、结果分析与应用
1. 结果分析
通过对模型的预测结果进行分析,可以了解不同因素对共享单车租赁需求的影响程度。例如,工作日和节假日的租赁需求可能存在显著差异;恶劣天气条件下租赁需求可能会下降;不同时间和地点的租赁需求也可能存在周期性变化等。
2. 应用建议
基于模型的预测结果,共享单车公司可以制定更加科学合理的运营和调度策略。例如,在预测到高需求时段提前增加车辆投放;在低需求时段减少车辆投放以降低成本;根据天气变化调整车辆布局等。此外,还可以将预测结果用于制定促销活动计划、优化站点布局等方面。
五、结论与展望
基于Random-Forest的共享单车租赁预测研究为共享单车公司的运营和调度提供了有力的技术支持。未来随着数据量的不断增加和算法的不断优化,该模型的预测性能有望进一步提高。同时,还可以探索其他机器学习算法在共享单车租赁预测中的应用,如深度学习等,以进一步提升预测的准确性和可靠性。
📚2 运行结果
部分代码:
def evaluate_forecasts(Ytest, predicted_data, n_out): # 定义一个函数来评估预测的性能。 mse_dic = [] rmse_dic = [] mae_dic = [] mape_dic = [] r2_dic = [] # 初始化存储各个评估指标的字典。 table = PrettyTable(['测试集指标','MSE', 'RMSE', 'MAE', 'MAPE','R2']) for i in range(n_out): # 遍历每一个预测步长。每一列代表一步预测,现在是在求每步预测的指标 actual = [float(row[i]) for row in Ytest] #一列列提取 # 从测试集中提取实际值。 predicted = [float(row[i]) for row in predicted_data] # 从预测结果中提取预测值。 mse = mean_squared_error(actual, predicted) # 计算均方误差(MSE)。 mse_dic.append(mse) rmse = sqrt(mean_squared_error(actual, predicted)) # 计算均方根误差(RMSE)。 rmse_dic.append(rmse) mae = mean_absolute_error(actual, predicted) # 计算平均绝对误差(MAE)。 mae_dic.append(mae) MApe = mape(actual, predicted) # 计算平均绝对百分比误差(MAPE)。 mape_dic.append(MApe) r2 = r2_score(actual, predicted) # 计算R平方值(R2)。 r2_dic.append(r2) if n_out == 1: strr = '预测结果指标:' else: strr = '第'+ str(i + 1)+'步预测结果指标:' table.add_row([strr, mse, rmse, mae, str(MApe)+'%', str(r2*100)+'%'])
🎉3 参考文献
文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。
[1]陈鑫,刘琦.基于时间序列分析的共享单车未来格局预测[J].现代营销(下旬刊), 2017(10):216-216.DOI:10.3969/j.issn.1009-2994.2017.10.174.
[2]焦志伦,金红,刘秉镰,等.大数据驱动下的共享单车短期需求预测——基于机器学习模型的比较分析[J].商业经济与管理, 2018(8):11.DOI:10.14134/j.cnki.cn33-1336/f.2018.08.002.
[3]甘明.基于深度学习的共享单车预测与调度研究[D].杭州电子科技大学,2022.
[4]靳海红,张帅.基于数据分析的共享单车模式与前景研究[J].商情, 2019.
🌈4 Python代码、数据
资料获取,更多粉丝福利,MATLAB|Simulink|Python资源获取