rgb2gray
人工智能领域优质创作者,CSDN博客专家
展开
-
停泊式共享单车的出行需求与建筑环境之间的关联:来自美国 7 个城市的证据
原文:Tang, Justin Hayse Chiwing G., et al. “The association between travel demand of docked bike-sharing and the built environment: Evidence from seven US cities.” Sustainable Cities and Society 106 (2024): 105325.原创 2025-04-28 23:50:44 · 12 阅读 · 0 评论 -
城市群出行需求的时空分形
原文:He, Zhengbing. “Spatial-temporal fractal of urban agglomeration travel demand.” Physica A: Statistical Mechanics and its Applications 549 (2020): 124503.原创 2025-04-28 21:23:19 · 182 阅读 · 0 评论 -
描述城市出行需求模式的复杂网络视角:大规模起点-目的地需求网络的图论分析
研究背景:全球城市人口增长导致对活动和出行需求增加,城市面临压力。传统的基于活动和代理的出行需求模型虽有助于理解出行选择机制,但出行需求通常未从网络角度分析。而交通网络建模进展多集中在供给侧,如日内平衡和日间交通流演变等。研究目的和方法:提出一种基于复杂网络的跨学科定量框架,通过分析起讫点需求网络的统计特性来理解和刻画城市出行需求模式。选取芝加哥和墨尔本两个城市的出行需求模式进行比较,运用复杂网络理论中的图论分析方法。研究结果和结论:尽管两城市在地形和城市结构上存在差异,但出行需求网络展现出相似的性质。原创 2025-04-22 21:18:10 · 280 阅读 · 0 评论 -
从 GPS 数据中捕捉城市休闲热点:空间异质性视角下的新框架
原文:Capturing urban recreational hotspots from GPS data: A new framework in the lens of spatial heterogeneity。原创 2025-04-22 19:46:42 · 278 阅读 · 0 评论 -
基于LightGBM-TPE算法对交通事故严重程度的分析与可视化
通过性能比较、特征重要性和可视化分析,作者不仅验证了LightGBM-TPE模型在预测交通事故严重性方面的优越性,还揭示了关键风险特征对事故致命性的影响机制。这些发现为城市规划者和交通管理部门提供了有价值的参考,有助于制定更有针对性的交通安全策略,特别是在高风险地理位置和时间段加强监管和控制。研究结果强调了数据可视化在理解复杂交通系统和指导政策制定中的重要作用,同时也为未来的研究方向提供了启发,例如进一步探讨制度激励对交通行为和事故演变的影响。原创 2025-04-22 16:23:52 · 543 阅读 · 0 评论 -
研究夜间灯光数据在估计出行需求方面的潜力
以共享单车出行需求(BSTD)为例,探讨夜间灯光(NTL)数据在优化预测性能和替代土地利用因素方面的潜力。通过逐步回归确定自变量集合,并使用五种集成学习和决策树驱动的机器学习算法进行预测分析,得出以下结论:Adaboost和GBDT算法在预测效果上优于其他算法;引入NTL数据后,所有方法的预测性能均明显优化,GBDT在减少均方误差(MSE)方面表现最佳;在引入NTL数据后,土地利用因素在预测BSTD时不再起作用,NTL数据已涵盖土地利用因素的作用。原创 2025-04-21 18:51:37 · 743 阅读 · 0 评论 -
共享单车出行规律与决定因素的空间交互分析——以北京六大区为例
原文:Spatial Interaction Analysis of Shared Bicycles Mobility Regularity and Determinants: A Case Study of Six Main Districts, Beijing这篇文章主要研究了北京六个主要城区共享单车的流动规律和影响因素,通过构建空间交互网络和使用指数随机图模型(ERGM)进行分析。原创 2025-04-19 17:06:16 · 658 阅读 · 0 评论