【高创新】基于优化的自适应差分导纳算法的改进最大功率点跟踪研究(Matlab代码实现)

💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

📋📋📋本文目录如下:🎁🎁🎁

目录

💥1 概述

【高创新】基于优化的自适应差分导纳算法的改进最大功率点跟踪研究

引言

1. 研究背景

2. 自适应差分导纳算法介绍

3. 算法优化与改进

3.1 算法参数优化

3.2 灵敏度分析

3.3 鲁棒性改进

3.4 多目标优化

4. 实验验证与结果分析

4.1 温度对太阳能电池板的影响

4.2 辐照度对太阳能电池板的影响

4.3 验证结果

5. 结论与展望

📚2 运行结果

🎉3 参考文献

🌈4 Matlab代码实现


💥1 概述

基于优化的自适应差分导纳算法的改进最大功率点跟踪研究听起来像是针对太阳能光伏系统或其他可再生能源系统的研究。这种研究可能涉及利用自适应差分导纳算法来实现最大功率点跟踪(MPPT),从而提高能源转换效率。

1. **算法优化**:改进自适应差分导纳算法的性能,使其能够更准确地跟踪光伏阵列的最大功率点。这可能涉及对算法参数进行调整或修改算法结构以适应不同条件下的动态变化。

2. **灵敏度分析**:通过对系统参数和环境条件的灵敏度分析,确定影响最大功率点跟踪性能的主要因素,并针对性地进行改进。

3. **鲁棒性改进**:增强算法的鲁棒性,使其在面对环境变化、光照条件波动或部分阴影等复杂情况下依然能够有效地跟踪最大功率点。

4. **多目标优化**:将最大功率点跟踪算法与其他目标(如提高系统稳定性、减少系统成本等)相结合,进行多目标优化,以实现更全面的性能提升。

5. **实验验证**:通过实验验证改进后的算法性能,验证其在实际光伏系统中的有效性和可行性。

这些改进可以通过理论分析、数值仿真以及实验验证等方法来完成,以提高光伏系统的能源利用效率和性能稳定性。

基于优化的自适应差分导纳技术,利用MATLAB软件开发了改进的最大功率点跟踪算法,用于可再生能源发电。一种基于优化的自适应差分导纳算法的改进最大功率点跟踪技术,这是一种非智能的最大功率点跟踪技术代码,可提高太阳能电池板向负载的功率传输。绘制的图表分为三个部分:(1)温度对太阳能电池板的影响,(2)辐照度(G)对太阳能电池板的影响,以及(3)验证结果,显示了开发模型与OADC模型在所产生的功率方面的差异。验证功率来自500W/m²和750W/m²。验证应显示新IAODC模型与OADC相比所产生的功率增加。

【高创新】基于优化的自适应差分导纳算法的改进最大功率点跟踪研究

引言

随着能源需求的不断增长和环境保护意识的提高,光伏发电作为一种可再生能源的重要代表,备受关注。光伏发电系统的效率和性能优化是当前研究的焦点之一。其中,最大功率点跟踪(MPPT)技术是实现光伏电池在不同光照条件下实时调整工作状态,以达到最大发电效率的关键技术。本文将对基于优化的自适应差分导纳算法的改进最大功率点跟踪技术进行深入分析和研究。

1. 研究背景

光伏发电系统中,光伏电池的工作效率受到多种因素的影响,其中最主要的是光照强度和温度。为了保持电池工作在最大功率点,以提高光伏发电系统的效率,MPPT技术应运而生。传统的MPPT方法包括恒定电压法、扰动观测法和增量导纳法等,但这些方法在实际应用中仍存在一定的局限性。

2. 自适应差分导纳算法介绍

自适应差分导纳算法(Adaptive Differential Conductance, ADC)是一种基于光伏电池特性的MPPT算法。该算法通过实时监测光伏电池的电压和电流变化,计算导纳值,并据此调整工作电压,以实现最大功率点跟踪。然而,传统的ADC算法在复杂多变的环境条件下,其跟踪精度和稳定性仍有待提高。

3. 算法优化与改进

为了克服传统ADC算法的不足,本文提出了一种基于优化的自适应差分导纳算法(Optimized Adaptive Differential Conductance, OADC)的改进最大功率点跟踪技术。该算法通过以下几个方面的优化和改进,提高了MPPT的精度和稳定性:

3.1 算法参数优化

通过对算法参数的精细调整,使OADC算法能够更准确地跟踪光伏阵列的最大功率点。这些参数包括缩放因子、交叉概率因子等,它们的优化有助于算法在不同光照和温度条件下保持较高的跟踪精度。

3.2 灵敏度分析

通过对系统参数和环境条件的灵敏度分析,确定影响最大功率点跟踪性能的主要因素,并针对性地进行改进。这有助于增强算法对复杂环境变化的适应能力。

3.3 鲁棒性改进

增强算法的鲁棒性,使其在面对环境变化、光照条件波动或部分阴影等复杂情况下依然能够有效地跟踪最大功率点。这包括引入更稳定的控制策略、提高算法的容错能力等。

3.4 多目标优化

将最大功率点跟踪算法与其他目标(如提高系统稳定性、减少系统成本等)相结合,进行多目标优化。通过综合考虑多个性能指标,实现更全面的性能提升。

4. 实验验证与结果分析

为了验证改进后的OADC算法的性能,本文进行了多个实验,并分析了实验结果。实验主要关注以下几个方面:

4.1 温度对太阳能电池板的影响

通过改变实验温度,观察太阳能电池板在不同温度下的功率输出情况。实验结果表明,改进后的OADC算法能够准确地根据实时温度数据调整电导值,从而最大程度地提高功率输出。

4.2 辐照度对太阳能电池板的影响

在不同光照强度下,对太阳能电池板进行测试。实验结果显示,改进后的OADC算法能够更精确地跟踪最大功率点,特别是在光照强度变化较大的情况下,其跟踪效果更为显著。

4.3 验证结果

通过对比实验,验证了改进后的OADC算法与标准ADC算法在发电量方面的差异。实验结果表明,在相同的光照条件下,OADC算法能够产生更高的电力输出,特别是在高光照条件下,其电力输出显著增加。

5. 结论与展望

本文提出了一种基于优化的自适应差分导纳算法的改进最大功率点跟踪技术,并通过实验验证了其有效性和可行性。实验结果表明,改进后的OADC算法在不同光照和温度条件下均表现出较高的跟踪精度和稳定性,为太阳能领域的技术改进提供了潜在的方向。

未来的研究可以进一步深入以下几个方面:一是继续优化算法参数,提高其适应能力和跟踪精度;二是结合模糊控制和人工智能算法,开发新的跟踪方法;三是深入研究光伏电池的特性和功率曲线,为跟踪技术的优化提供更多的理论依据。

📚2 运行结果

部分代码:

%%%constant parameters
%%%%%%%%
%code for outputcurrent(I) with different value of voltage
q=1.602*10^-19;
k=1.3805*10^-23;
Rs=0.008;
n=200;
%Io=0.07;
Irs=0.07;
Ego=1.7622*10^-19;
A=1;
w=0.001;%% 1/1000
ki=-0.0045;%shunt circuit current temperature coefficient of the cell(/oC)
T=250;%(changing variable from 250-350 )
Tr=298;
Gr=1000;
G = 1000;%(change irradiance variable 500-1000)
%%% 
Io = Irs*(((T/Tr)^3)*exp(((q*Ego)/(A*k))*((1/Tr)-(1/T))));
Isc=((A*n*k*T)./(q*Rs))*(log((1)+(w./Io)));
Iph =((Isc)+(ki.*(T-Tr))).*(G./Gr);
Voc=(((A*n*k*T)./(q)).*(log((Iph./Io)+1)));
V= 0:2.1758:Voc;
I=Iph-(Io.*(exp((q.*V)./(A*n*k*T)))-1);
plot(V,I);
grid on
xlabel('voltage')
ylabel('output current')
title('V-I characteristics')
%%%code for voltage maximum power point
input= 1;
output=0;
disp('iterate values till no more changes');
for z=1:20;
    H= log(1+((q*input)/(A*n*k*T)));
    % Vmpp = ((A*n*k*T)./q).*(log(((Iph/Io)-(H/Io))));
     Vmpp = ((A*n*k*T)/q)*(log(Iph/Io)-H);
    disp(input);
    disp(Vmpp);
    input =  Vmpp;
end
%code for current maximum power point. 
Impp=Iph-(Io.*(exp((q*Vmpp)./(A*n*k*T))-1));
%degradation code 
ff=(Vmpp*Impp)./(Voc*Isc);
%code for di/dv known as slope.
slope = -((Io*q)/(A*n*k*T)).*((exp((V.*q)/(A*n*k*T))-1));
P=I.*V;
d= Impp./Vmpp
IE=(((Impp/Vmpp)+(slope))); 

🎉3 参考文献

文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。

[1]时语欣刘鸿鹏张伟.基于改进风力驱动优化算法的最大功率点跟踪控制研究[J].电气自动化, 2022, 44(6):16-18.

[2]陈仕彬,韩自奋,梁福波,等.基于改进PSA算法的光伏系统最大功率点跟踪技术研究[J].物联网技术, 2016, 6(11):3.DOI:CNKI:SUN:WLWJ.0.2016-11-020.

[3]陈娟,邱爱兵,戴伟,等.基于改进扰动观察法的最大功率点跟踪研究[J].南通大学学报:自然科学版, 2013, 12(1):5.DOI:10.3969/j.issn.1673-2340.2013.01.007.

[4]王秀玲,王昊赬.太阳能光伏系统中基于自适应控制的最大功率点跟踪方法研究[J].广东电力, 2012, 25(7):4.DOI:10.3969/j.issn.1007-290X.2012.07.003.

🌈4 Matlab代码实现

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值