💥💥💞💞欢迎来到本博客❤️❤️💥💥
🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。
⛳️座右铭:行百里者,半于九十。
📋📋📋本文目录如下:🎁🎁🎁
目录
⛳️赠与读者
👨💻做科研,涉及到一个深在的思想系统,需要科研者逻辑缜密,踏实认真,但是不能只是努力,很多时候借力比努力更重要,然后还要有仰望星空的创新点和启发点。当哲学课上老师问你什么是科学,什么是电的时候,不要觉得这些问题搞笑。哲学是科学之母,哲学就是追究终极问题,寻找那些不言自明只有小孩子会问的但是你却回答不出来的问题。建议读者按目录次序逐一浏览,免得骤然跌入幽暗的迷宫找不到来时的路,它不足为你揭示全部问题的答案,但若能让人胸中升起一朵朵疑云,也未尝不会酿成晚霞斑斓的别一番景致,万一它居然给你带来了一场精神世界的苦雨,那就借机洗刷一下原来存放在那儿的“躺平”上的尘埃吧。
或许,雨过云收,神驰的天地更清朗.......🔎🔎🔎
💥1 概述
研究背景
噪声污染已成为全球关注的环境问题。传统被动噪声控制方法,如吸收、隔离、阻尼等,主要对高频噪声有较好的抑制效果,但对低频噪声的控制效果不佳。主动噪声控制(ANC)技术则具有良好的低频特性,非常适用于控制低频谐波噪声,这类噪声通常产生于旋转设备或具有往复运动的装置。
主动噪声控制(ANC)原理
主动噪声控制方法的核心原理是利用声波的干涉现象,通过生成与噪声相位相反的声波来抵消噪声。LMS(Least Mean Squares,最小均方)算法是一种自适应滤波算法,通过不断调整滤波器系数,以最小化误差信号的均方值,从而实现噪声的抑制。FxLMS(Filtered-x Least Mean Squares)算法是对传统LMS算法的改进,特别适用于处理存在次路径的系统。
Fxlms算法在宽带和窄带ANC中的应用
-
宽带ANC:
- 宽带噪声的频率成分丰富,覆盖较宽的频率范围。
- Fxlms算法通过自适应迭代过程,不断调整滤波器系数,以适应宽带噪声的变化。
- 在实际应用中,宽带ANC系统需要处理多种频率成分的噪声,因此算法的稳定性和鲁棒性至关重要。
-
窄带ANC:
- 窄带噪声的频率成分相对集中,通常是由旋转设备或往复运动装置产生的谐波噪声。
- 窄带ANC系统利用Fxlms算法,通过次路径建模和滤波,对噪声信号进行适当的调整,以提高控制系统的稳定性和降噪性能。
- 窄带ANC系统对低频噪声的控制效果尤为显著,适用于工业设备、运输设备等产生的低频谐波噪声。
系统性能分析
对基于Fxlms算法的宽带和窄带ANC系统进行性能分析,包括动态性能和稳态性能分析。通过统计理论和现代信号处理理论,可以解算差分方程,获取系统性能的关键指标。这些分析有助于深入理解系统性能,并为系统改进提供理论依据。
实验验证
为验证Fxlms算法在宽带和窄带ANC中的有效性,可以设计实验系统进行测试。例如,在管道噪声控制中,可以利用Fxlms算法实现低频窄带噪声的主动控制。实验结果表明,经过优化的Fxlms算法在不同频率范围内均能有效抑制噪声,同时展现出良好的稳定性和鲁棒性。
结论与展望
基于Fxlms算法的宽带和窄带ANC技术具有广阔的应用前景。通过深入研究算法原理、优化算法性能、提高系统稳定性和鲁棒性,可以进一步推动ANC技术的发展和应用。未来,可以探索将Fxlms算法与其他先进技术相结合,如深度学习、神经网络等,以进一步提升ANC系统的降噪效果。
📚2 运行结果
部分代码:
fs=16e3;
f=f_dig*fs;
t=0:fs*T;
dotnumber=length(t);
iterall=5;
e_ave=zeros(dotnumber,1);
for i=1:iterall
if strcmp(type,'sin')
x=sin(2*pi*f_dig*t);
elseif strcmp(type,'white')
% x=wgn(dotnumber,1,0);
x=randn(dotnumber,1);
elseif strcmp(type,'pink')
x=pinknoise(dotnumber,1);
end
%%初级路径(the primary path)
p=zeros(D_p+1,1);%%延迟L1,则有L1+1个向量
p(D_p)=1;
d=filter(p,1,x);
w=zeros(L,1);
x1=zeros(L,1);%
x2=zeros(D_est_s+1,1);%
y1=zeros(D_s+1,1);%
e1=zeros(dotnumber,1);
r1=zeros(L,1);
%%次级路径
s=zeros(D_s+1,1);
s(D_s+1)=1;
s_est=zeros(D_est_s+1,1);
s_est(D_est_s+1)=1;
for n1=1:dotnumber
x1=[x(n1);x1(1:end-1)];
y1=[x1'*w;y1(1:end-1)];
e1(n1)=d(n1)+y1'*s;%In reality, two sources are "added"
🎉3 参考文献
文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。
[1]刘剑.基于FXLMS算法的窄带主动噪声控制系统性能分析研究[D].哈尔滨工业大学,2011.
[2]王士浩,王生栋,查富生,等.基于FXLMS算法的主动噪声控制降噪效果研究[J].机械与电子, 2015, No.279(12):23-27.
[3]袁军,李军,袁财政,等.用于分布式主动噪声控制的低复杂度DFxLMS算法[J].国外电子测量技术, 2022(007):041.
🌈4 Matlab代码实现
资料获取,更多粉丝福利,MATLAB|Simulink|Python资源获取