💥💥💞💞欢迎来到本博客❤️❤️💥💥
🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。
⛳️座右铭:行百里者,半于九十。
📋📋📋本文目录如下:🎁🎁🎁
目录
电力系统机组组合优化调度研究文档(IEEE14、IEEE30、IEEE118节点系统)
⛳️赠与读者
👨💻做科研,涉及到一个深在的思想系统,需要科研者逻辑缜密,踏实认真,但是不能只是努力,很多时候借力比努力更重要,然后还要有仰望星空的创新点和启发点。建议读者按目录次序逐一浏览,免得骤然跌入幽暗的迷宫找不到来时的路,它不足为你揭示全部问题的答案,但若能解答你胸中升起的一朵朵疑云,也未尝不会酿成晚霞斑斓的别一番景致,万一它给你带来了一场精神世界的苦雨,那就借机洗刷一下原来存放在那儿的“躺平”上的尘埃吧。
或许,雨过云收,神驰的天地更清朗.......🔎🔎🔎
💥1 概述
本文提出一种确定机组组合的降维半解析动态规划方法,可以与其他经济调度算法相结合,用以解决多种约束条件下的机组组合问题。该方法通过比较各时段负荷及机组参数,剔除各时段下不满足要求的组合状态,从而减少动态规划中的状态点数;根据机组的最小连续运行、停运时间限制,以及机组功率上升、下降速度的约束,剔除了状态点间的无效路径,从而减少了动态规划的路径个数,达到降维的目的;在确定机组启停状态后,再采用解析法进行机组的功率分配,可以大大提高动态规划方法的效率。
电力系统机组组合优化调度是一个复杂的问题,它涉及到在满足电力需求的同时,优化发电机的启停状态以及输出功率,以最小化运行成本、满足系统约束(如功率平衡、机组出力限制、网络传输限制等),并考虑系统的可靠性和稳定性。IEEE 14节点、IEEE 30节点和IEEE 118节点系统模型是电力系统研究中常用的测试系统,用于模拟和验证不同的优化算法和策略。
研究步骤
- 系统建模:
- 网络模型:包括节点、线路、变压器等元件的参数。
- 发电机模型:每台发电机的成本函数(通常是二次函数)、最小/最大出力限制、启停成本、爬坡速率等。
- 负荷模型:各节点的负荷预测值。
- 问题定义:
- 目标函数:通常是最小化总运行成本,包括发电成本和启停成本。
- 约束条件:
- 功率平衡约束:每个节点的注入功率等于负荷。
- 线路传输容量约束:确保线路上的潮流不超过其最大容量。
- 发电机出力约束:每台发电机的输出功率在其最小和最大限制之间。
- 爬坡速率约束:发电机输出功率的变化率有限制。
- 启停时间约束:发电机从停机到启动或从运行到停机需要一定时间。
- 优化算法选择:
- 混合整数线性规划(MILP):将问题中的非线性部分线性化,使用商业求解器(如CPLEX、Gurobi)求解。
- 动态规划:适用于小规模系统,可以处理复杂的约束和状态转移。
- 启发式算法:如遗传算法、粒子群优化、模拟退火等,适用于大规模系统,但可能无法保证找到最优解。
- 拉格朗日松弛法:将复杂约束松弛到目标函数中,通过迭代求解。
- 数据准备与仿真:
- 使用MATLAB、Python(如使用Pyomo库结合CPLEX或Gurobi求解器)等工具进行编程。
- 加载IEEE 14节点、IEEE 30节点或IEEE 118节点的系统数据。
- 设定仿真参数,如时间步长、仿真时长等。
- 结果分析:
- 分析优化后的机组启停计划和出力计划。
- 比较不同算法的性能,如求解时间、成本节约等。
- 评估系统的可靠性和稳定性,如是否满足所有约束条件。
- 优化与改进:
- 根据仿真结果调整算法参数或优化模型。
- 尝试新的优化策略或算法。
电力系统机组组合优化调度是一个复杂的问题,涉及多种优化算法和工具。通过比较不同算法的性能(如求解时间、成本节约等),可以评估系统的可靠性和稳定性。未来的研究可以进一步引入新的运行场景、新的调度变量以及新的不确定性量化算法,以达到不同方向的研究目标。
电力系统机组组合优化调度研究文档(IEEE14、IEEE30、IEEE118节点系统)
一、IEEE14节点系统
1. 系统概述
IEEE14节点系统是电力系统研究中广泛使用的基础模型,具有以下特点:
- 拓扑结构:存在两种版本:
- 配电网模型:辐射型结构,总负荷为28.7+j7.75 MVA,适用于配电网分析。
- 潮流计算模型:环形结构,负荷更大,包含14个节点、20条支路、4台发电机和5台变压器,支持稳态分析(如潮流计算)和动态仿真(如暂态稳定性)。
- 关键参数:
- 节点1为平衡节点(电压1.05 p.u.),其他发电机节点(如节点2)提供有功和无功功率。
- 包含并联电容器、变压器分接头等控制设备,支持无功优化研究。
- 应用场景:潮流计算、短路分析、动态稳定性分析,以及新能源接入(如微电网模型)。
2. 机组组合优化调度研究
- 经典算法应用:
- 粒子群算法(PSO) :用于无功优化,通过实数编码控制变量(如发电机端电压、电容器投切)。
- 动态规划与解析法结合:通过降维处理减少状态空间,提升计算效率。
- 仿真工具:
- MATLAB/Simulink:构建同步发电机模型,研究动态响应和控制策略。
- PSASP:支持最优潮流、暂态稳定性等多场景分析。
- 创新方向:引入风电、光伏和储能,构建复合微电网模型,验证多能源协同调度策略。
二、IEEE30节点系统
1. 系统概述
IEEE30节点系统复杂度更高,适用于中规模电网分析:
- 拓扑结构:包含30个节点、41条线路、6台发电机(节点1、2、5、8、11、13)和4台可调变压器。
- 关键参数:
- 负荷节点电压限值0.95–1.05 p.u.,基准容量100 MVA。
- 多台无功补偿设备(如节点17、18、23、27)和变压器分接头调节能力(变比0.9–1.1)。
- 应用场景:最优潮流计算、动态经济调度、含可再生能源的优化问题。
2. 机组组合优化调度研究
- 混合整数规划模型:
- 以CPLEX求解机组启停计划,目标函数为总运行成本(煤耗+启停成本)最小化。
- 引入直流潮流约束,确保线路功率不越限,提升调度安全性。
- 智能算法对比:
- 遗传算法(GA)与PSO:验证PSO在降低日运营成本(13925.33美元 vs. GA的13926.54美元)方面的优势。
- 差分进化与PSO混合算法(DEPSO) :解决最优潮流问题,收敛速度优于传统算法。
- 新能源整合:在节点20、24接入风电场和光伏电站,通过场景缩减技术处理风光不确定性。
三、IEEE118节点系统
1. 系统概述
IEEE118节点系统代表大规模电网,具有复杂结构和多样化设备:
- 拓扑结构:118个节点、177条线路、54台发电机(含69台同步电机)、9台三绕组变压器,电压等级涵盖345 kV至10.5 kV。
- 关键参数:
- 总装机容量约10,000 MW,实际出力约5,000 MW,网损率3.04%。
- 包含91个三相负载和145台两绕组变压器,支持多区域互联分析。
- 应用场景:大电网稳定性评估、月度机组组合与检修计划联合优化。
2. 机组组合优化调度研究
- 复杂约束处理:
- 机会约束规划:考虑风电月度概率分布,优化机组组合与检修计划,降低弃风率。
- 混合整数线性规划(MILP) :联合优化PHEV充放电计划与机组组合,降低碳排放成本。
- 实时调度与储能整合:
- 点估计仿射鲁棒优化(PE-AARO) :在19台机组中整合6个风电场和4个储能系统,提升实时调度鲁棒性。
- 安全约束机组组合(SCUC) :结合交流潮流约束,迭代求解日前市场出清结果。
- 仿真工具:Modelica GUI构建电磁暂态模型,验证故障场景下的保护策略。
四、总结与对比
系统 | 规模特点 | 优化算法应用 | 典型研究场景 |
---|---|---|---|
IEEE14 | 小规模,双版本结构 | PSO、动态规划、Simulink仿真 | 配电网分析、微电网集成 |
IEEE30 | 中规模,多控制变量 | MILP、DEPSO、安全约束优化 | 最优潮流、风光不确定性调度 |
IEEE118 | 大规模,多电压等级 | 机会约束、PE-AARO、SCUC | 月度计划、储能整合、跨区域互联 |
未来研究方向:
- 多能源协同:深化风光储联合调度模型,提升新能源消纳能力。
- 人工智能融合:探索深度学习在机组组合中的实时决策应用。
- 市场机制设计:结合电力市场规则(如节点电价),优化经济性-安全性权衡。
📚2 运行结果
3.1 算例1——IEEE14节点
3.2 算例2——IEEE30节点
3.3 算例3——IEEE118节点
3.4 二阶锥松弛法
%发电机费用曲线 二次函数分段线性化
P_nl = sdpvar(n_gen, n_L, n_T);
% for i = 1: n_gen
for t = 1: n_T
C = [C,
gen_P(gen(:,GEN_BUS),t) == sum(P_nl(:,:,t), 2)+gen(:,GEN_PMIN).*u_state(gen(:,GEN_BUS),t)/baseMVA,
];
% for l = 1: n_L
C = [C,
0 <= P_nl(:,:,t) <= (gen(:, GEN_PMAX)-gen(:, GEN_PMIN))/n_L/baseMVA*ones(1,n_L),
];
% end
end
% end
%%
% 机组开机费用 Cjk
cost_up = sdpvar(n_gen, n_T);
C = [C, cost_up >= 0];
for k = 1: n_T
for t = 1: k-1
C = [C,
cost_up(:,k) >= start_cost(:,t).*(u_state(gen(:,GEN_BUS),k) - sum(u_state(gen(:,GEN_BUS),[k-t: k-1]),2))
];
end
end
for i = 1: n_gen
if (init_state(gen(i,GEN_BUS)) == 0)
C = [C,
cost_up(i,1) >= start_cost(i,init_down(i))*(u_state(gen(i,GEN_BUS),1)-init_down(i)*init_state(gen(i,GEN_BUS)))
];
end
end
%发电机费用曲线 二次函数分段线性化
P_nl = sdpvar(n_gen, n_L, n_T);
% for i = 1: n_gen
for t = 1: n_T
C = [C,
gen_P(gen(:,GEN_BUS),t) == sum(P_nl(:,:,t), 2)+gen(:,GEN_PMIN).*u_state(gen(:,GEN_BUS),t)/baseMVA,
];
% for l = 1: n_L
C = [C,
0 <= P_nl(:,:,t) <= (gen(:, GEN_PMAX)-gen(:, GEN_PMIN))/n_L/baseMVA*ones(1,n_L),
];
% end
end
% end
%%
% 机组开机费用 Cjk
cost_up = sdpvar(n_gen, n_T);
C = [C, cost_up >= 0];
for k = 1: n_T
for t = 1: k-1
C = [C,
cost_up(:,k) >= start_cost(:,t).*(u_state(gen(:,GEN_BUS),k) - sum(u_state(gen(:,GEN_BUS),[k-t: k-1]),2))
];
end
end
for i = 1: n_gen
if (init_state(gen(i,GEN_BUS)) == 0)
C = [C,
cost_up(i,1) >= start_cost(i,init_down(i))*(u_state(gen(i,GEN_BUS),1)-init_down(i)*init_state(gen(i,GEN_BUS)))
];
end
end
🎉3 参考文献
文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。(文章内容仅供参考,具体效果以运行结果为准)
[1]袁晓辉,袁艳斌,张勇传.电力系统中机组组合的现代智能优化方法综述[J].电力自动化设备, 2003, 23(2):73-78.DOI:10.3969/j.issn.1006-6047.2003.02.023.
🌈4 Matlab代码、数据下载
资料获取,更多粉丝福利,MATLAB|Simulink|Python资源获取