【不确定性研究】基于信息间隙决策理论的综合能源系统优化调度研究【改进粒子群优化算法求解】(Matlab代码实现)

💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

📋📋📋本文目录如下:🎁🎁🎁

目录

💥1 概述

基于信息间隙决策理论的综合能源系统优化调度研究

引言

信息间隙决策理论(IGDT)

综合能源系统优化调度模型

光热电站模型

P2G与碳捕集装置联合运行

不确定参数处理

优化调度策略

案例分析

结论

📚2 运行结果

🎉3 参考文献

🌈4 Matlab代码实现


💥1 概述

电-气综合能源系统的运行面临多种不确定性因素,包括可再生能源波动、负荷需求变化、系统设备故障等都会对IEGS 的安全稳定运行产生影响。近年来,国内外也有一部分研究针对电-气综合能源系统优化调度中的不确定性,主流的是采用随机优化和鲁棒优化的方式进行决策。文献[35-37]单独考虑可再生能源出力不确定性展开论述。文献[35]利用动态场景方法刻画新能源出力不确定性,计及温控负荷调节能力等约束,研究新能源消纳对配电网的影响。文献[36]将分布式鲁棒优化方法应用到电-气互联系统的经济调度中,建立了基于数据驱动下的两阶段优化调度模型。文献[37]考虑风电出力不确定性和碳排放约束的影响,分析气价波动和风电预测误差对电-气互联系统优化调度的影响。
文献[38-40]同时考虑源荷双重不确定性对电-气综合能源系统调度带来的风险。文献[38]提出一种考虑双重不确定性的电-气互联综合能源系统随机规划模型,利用矩不确定分布鲁棒优化方法进行求解,结果表明考虑不确定性后的模型运行成本有所增加,但降低了系统的风险。文献[39]针对区域综合能源系统由不确定性导致的供需失衡等问题,建立了计及风电、负荷不确定性和天然气系统约束的区域综合能源系统多目标优化调度模型,探讨系统自我调节、有功削减、无功调节和电转气等方案对系统的影响。文献[40]计及风电出力和电负荷的不确定性,建立了电-气互联系统鲁棒优化调度模型,并利用改进的交替方向乘子算法对电力子系统和天然气子系统进行分解计算。
由于技术手段的限制,风电场对风电的预测存在很大偏差,而且出于保密的考虑,调度者也无法得到准确完整的风电数据,在竞争型电力市场的背景下,负荷需求量会根据天气状况、突发事件等产生大幅度波动,信息收集方在这方面的认知能力也存在局限性,传统解决不确定性的方法无法应对这些新的变化4。信息间隙决策理论是处理含不确定参数调度决策问题的一种新的重要的数学方法。为了准确衡量不确定因素对电-气综合能源系统的影响,本文针对如何应对风电、负荷不确定性,提高系统稳定性和经济性的问题,提出采用信息间隙决策理论处理不确定性。其特点是根据预设目标的好坏,其影响可分为消极和积极两个方面,它们分别对应了决策者在面对风险时所采取的两种相反的价值取向:一种认为不确定参数的存在将对目标期望产生负面影响;另一种则认为不确定参数将对目标期望产生正面影响。

基于信息间隙决策理论的综合能源系统优化调度研究

引言

随着全球气候变化问题的日益严重,能源行业正面临前所未有的挑战。为了实现碳减排目标,构建高效、可靠的能源系统显得尤为重要。综合能源系统通过集成和协调不同能源形式,实现能源的高效利用和碳经济的最大化。然而,风光等可再生能源的出力不确定性给系统的优化调度带来了巨大挑战。本文基于信息间隙决策理论(IGDT),探讨综合能源系统的优化调度策略,以应对这些不确定性。

信息间隙决策理论(IGDT)

信息间隙决策理论是一种处理含不确定参数调度决策问题的新的数学方法。它能够在不完全信息下做出最优决策,为处理可再生能源出力的不确定性提供了有力工具。IGDT包括鲁棒模型和机会模型两种主要形式:

  • 鲁棒模型:面对不确定参数时,提供一种鲁棒的决策方案,确保在各种情况下都能保持较高的运行效率。
  • 机会模型:注重利用不确定参数带来的机会,通过优化决策提高经济性和环保性。

综合能源系统优化调度模型

本文构建了一个包含光热电站、储气、储碳、碳捕集装置以及P2G(Power-to-Gas)装置的综合能源系统优化调度模型。模型基于IGDT理论,全面考虑了风光不确定性的影响,以实现碳经济的最大化。

光热电站模型

光热电站是一种利用太阳能转换成热能再转换成电能的能源转换设备。模型中对光热电站的运行机制和模型进行了详细构建,适合需要学习和了解光热电站的用户。

P2G与碳捕集装置联合运行

模型考虑了P2G装置与碳捕集装置的联合运行,以进一步提高能源利用效率和降低碳排放。P2G装置能够将多余的电能转化为天然气储存起来,而碳捕集装置则用于捕集和储存发电过程中产生的二氧化碳,从而实现碳经济的最大化。

不确定参数处理

在模型中,不确定参数可以自行调节,以进行灵敏度分析。通过调整不确定参数,可以评估其对系统优化调度的影响,从而做出更合理的决策。这种灵活性确保了模型在面对不同场景下的鲁棒性和适应性。

优化调度策略

为了应对风光等可再生能源的出力不确定性,本文提出了基于IGDT信息间隙决策的综合能源系统优化调度策略。策略包括以下几个方面:

  1. 场景生成与缩减:利用预测箱和K-means聚类方法生成大规模场景,并通过聚类缩减以降低计算复杂度。
  2. 日前调度策略:构建电力系统、热力系统和天然气系统的网络模型,并通过线性化处理解决非凸问题。构建基于激励的需求响应模型,提高用能侧灵活性。
  3. 日内调度策略:采用模型预测控制(MPC)进行多时间尺度分层滚动调度,对日前调度计划进行逐层修正。考虑风电及电、热、气负荷的不确定性,建立模糊机会约束模型,以提高预测精确度和实时性。

案例分析

本文以一个碳捕集电厂为例进行了案例分析。该电厂采用了多种能源设施,通过优化调度策略实现了碳减排目标的同时,也提高了能源利用效率。分析结果表明,基于IGDT信息间隙决策的综合能源系统优化调度模型在实际应用中具有显著效果。

结论

本文基于信息间隙决策理论,构建了一个考虑风光不确定性的综合能源系统优化调度模型。模型包含了光热电站、储气、储碳、碳捕集装置以及P2G装置等多种能源设备,并通过灵活的调度策略实现了碳经济的最大化。通过案例分析,验证了该模型的有效性和实用性。未来,我们将继续探索和创新,推动能源的优化和发展,以应对能源行业面临的挑战。

📚2 运行结果

 

 

 

 

🎉3 参考文献

部分理论来源于网络,如有侵权请联系删除。

[1]陆肖宇. 基于信息间隙决策理论的电—气综合能源系统优化调度研究[D].燕山大学,2020.DOI:10.27440/d.cnki.gysdu.2020.000399.

[2]潘华,姚正,林顺富,方静,颜静汝,高旭.基于信息间隙决策理论的含光热电站及热泵的综合能源系统低碳调度优化[J].现代电力,2022,39(02):169-183.DOI:10.19725/j.cnki.1007-2322.2021.0058.

[3]江南,朱双涛,孙志刚,蔡培倩,唐传旭.基于信息间隙决策理论的微电网多目标鲁棒优化调度[J].内蒙古电力技术,2022,40(05):73-79.DOI:10.19929/j.cnki.nmgdljs.2022.0085.

🌈4 Matlab代码实现

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值