💥💥💞💞欢迎来到本博客❤️❤️💥💥
🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。
⛳️座右铭:行百里者,半于九十。
📋📋📋本文目录如下:🎁🎁🎁
目录
💥1 概述
考虑负荷满意度的微电网运行多目标优化方法研究
从目前的研究来看,对于微电网运行优化的研究主要从优化对象(微网结构及设备特性)、优化时
间尺度、优化目标以及优化问题的求解 4 个方面展开。
1)优化对象:早期研究多仅关注电源侧。文献[3]提出了包含光伏发电、风力发电、柴油机以及
硫钠电池储能的微网系统优化模型。文献[4]在风/光/柴/蓄基础上考虑了燃料电池。文献[5]研究了由
光伏电池、蓄电池、微型燃气轮机、余热锅炉、蓄热槽组成的 CHP 型微电网。随着智能电网、能源互联网等新概念和技术的提出,用户侧受到越来越多的重视。相对于大电网,微网负荷调控和管理的灵活性和可操作性更具优势。因此,完全可以借助经济措施实现微网需求侧管理,提高微网运行效益。
2)由于风/光等自然资源的不确定性和不可控性,微网的优化时间尺度也具有其特殊性。风力发
电机的日前预测出力误差通常为 25%~40%,光伏阵列的日前预测出力误差通常为 20%左右,而两者短期预测出力的误差都可以降低到 10%[6-7]。因此,多时间尺度成为必然选择。
3)至于优化目标的选取,微电网的效益体现在多方面,经济[8-9]、环境[10]、供电可靠性[11]等等。结合智能电网和能源互联网的发展趋势,从微电网未来发展来看,能源互联网最终要走向消费端。因此,不仅仅从电源侧考虑,进一步从负荷侧考虑,或从两者得到一个折中的优化点,实现源–网–荷的全局最优化是必然趋势。
4)优化问题的求解。微电网优化是多变量、多约束和非线性的多目标优化问题。传统多目标优
化方法,如目标权重法、距离函数法以及转换为最小最大问题等,以及传统智能算法,如基本遗传算法,其本质上都是通过特定的方式将多目标转换成单目标问题。权重设置的合理性和有效性是其中的难题[12]。基于 Pareto 最优概念的进化算法克服了上述方法的不足,直接处理多个目标,无需对多目标赋予权重,成为求解多目标问题的有效方法[12-13]。Agarwal 提出的改进非劣解排序遗传算法(NSGA-II)更是被广泛应用[14]。
一、微电网多目标优化的核心目标与约束
微电网多目标优化需平衡经济性、环保性、可靠性和用户满意度等多维度需求。根据文献研究,其核心目标可归纳为:
- 经济性:最小化运行成本(含设备折旧、燃料费用、购售电成本等)。
- 环保性:减少污染物排放(如CO₂、NOx等),提升可再生能源利用率。
- 可靠性:降低失负荷概率(LOLP)或未供电能量(EENS),确保供电连续性。
- 负荷满意度:通过负荷曲线调整、用电费用优化和舒适度保障提升用户体验。
约束条件包括功率平衡、设备出力限制、储能荷电状态(SOC)、电网交互功率限制等。例如,储能系统需满足充放电功率上下限及SOC循环寿命约束。
二、负荷满意度的定义与量化方法
负荷满意度是衡量用户对用电调整接受程度的核心指标,其量化方法包括:
-
用电方式满意度:通过需求响应前后负荷曲线的差异度计算,如式(1)所示:
其中,Qt和Qt′分别为调整前后的负荷量,差值越大则满意度越低。
-
综合满意度模型:结合舒适度、优先级和经济性三属性,如式(2):
其中,权重α,β,γ反映用户偏好。
-
费用满意度:比较实际电价成本缩减与预期最优值,评估用户对费用优化的接受度。
三、多目标优化方法分类与算法选择
现有方法可分为两类:
- 单目标转化法:
- 加权法:将多目标线性加权为单一目标,但对权重敏感,易陷入局部最优。
- 约束法:将部分目标转化为约束条件,如设定碳排放上限。
- 多目标智能算法:
- NSGA-II:通过非支配排序和拥挤度计算生成Pareto前沿,适用于高维非凸问题。
- 改进粒子群算法(如r-BBMOPSO):引入自适应惯性权重和归档机制,提升收敛速度。
- 灰狼优化算法:结合领导者策略和动态参数调整,平衡全局与局部搜索。
算法对比:
算法 | 优势 | 局限性 |
---|---|---|
NSGA-II | Pareto前沿分布均匀,支持复杂约束 | 计算复杂度较高(O(MN2)O(MN2)) |
粒子群优化 | 快速收敛,易于实现 | 易早熟收敛,需参数调优 |
改进灰狼算法 | 鲁棒性强,适合非线性问题 | 需结合问题特性设计更新规则 |
四、负荷满意度与多目标优化的集成模型构建
结合经济、环保与满意度的优化模型构建步骤:
- 目标函数设计:
- 经济目标:总运行成本最小化,含燃料费、维护费及购电成本。
- 环保目标:污染物治理成本最小化,如式(3):
其中,Ei为污染物排放量,λi为治理单价。
- 满意度目标:最大化负荷满意度SS或最小化负荷调整惩罚。
- 决策变量与约束:
- 变量:包括柴油机出力PDG、储能充放电功率PESS、可转移负荷时段tshift等。
- 关键约束:
- 模型求解流程:
五、典型案例与仿真验证
-
电动汽车(EV)调度案例:
- 上层模型:以用户充电满意度最大为目标,优化EV充电时段与位置。
- 下层模型:微电网以运行成本与净负荷波动最小为目标,制定动态电价策略。
- 结果:动态电价策略降低峰谷差15%,用户满意度提升20%。
-
风光储微电网调度案例:
- 目标:最小化运行成本,最大化风光消纳率和用户舒适度。
- 方法:采用NSGA-II优化储能充放电策略与可中断负荷调度。
- 仿真工具:MATLAB/Simulink结合Python进行多目标优化。
仿真结果示例:
优化方案 | 运行成本(元) | 碳排放(kg) | 满意度(%) |
---|---|---|---|
传统调度 | 5200 | 1200 | 78 |
多目标优化 | 4800 | 900 | 85 |
负荷满意度优先 | 5000 | 950 | 92 |
六、未来研究方向
- 不确定性建模:引入条件风险价值(CVaR)量化风光出力与负荷波动风险,提升鲁棒性。
- 多时间尺度优化:结合日前调度与实时修正,应对分钟级需求响应。
- 人工智能融合:利用深度强化学习(DRL)动态调整优化权重,实现自适应调度。
- 社会效益评估:扩展至经济-环境-社会三维度优化,量化微电网对社区就业、健康的影响。
结论
负荷满意度作为微电网用户侧的核心指标,需与经济性和环保性目标协同优化。通过多目标智能算法(如NSGA-II)与精细化负荷建模(如综合满意度指数),可在降低运行成本的同时提升用户体验。未来研究需进一步探索不确定性处理、多时间尺度协同及跨学科方法融合,推动微电网向高效、可靠、用户友好的方向发展。
📚2 运行结果
🎉3 参考文献
文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。
[1]曾君,徐冬冬,刘俊峰等.考虑负荷满意度的微电网运行多目标优化方法研究[J].中国电机工程学报, 2016, 36(12): 3325 -3334.
[2] K. Deb, A. Pratap, S. Agarwal and T. Meyarivan, "A fast and elitist multiobjective genetic algorithm: NSGA-II," in IEEE Transactions on Evolutionary Computation, vol. 6, no. 2, pp. 182-197, April 2002, doi: 10.1109/4235.996017.