【GOOSE优化VMD】基于鹅算法优化VMD参数,五种适应度函数任意切换,最小包络熵、样本熵、信息熵、排列熵、排列熵/互信息熵研究(Matlab代码实现)

    💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

📋📋📋本文目录如下:🎁🎁🎁

目录

 ⛳️赠与读者

💥1 概述

基于GOOSE算法优化VMD参数及多适应度函数切换的研究

一、GOOSE算法原理及优化机制

二、VMD参数优化需求与挑战

三、适应度函数的设计与切换机制

四、GOOSE优化VMD参数的实现流程

五、应用案例与优势分析

六、总结与展望

📚2 运行结果

2.1 最小包络熵作为适应度函数

2.2 最小样本熵作为适应度函数

2.3 最小信息熵作为适应度函数

2.4 最小排列熵作为适应度函数

2.5 复合指标作为适应度函数

🎉3 参考文献 

🌈4 Matlab代码实现


 ⛳️赠与读者

👨‍💻做科研,涉及到一个深在的思想系统,需要科研者逻辑缜密,踏实认真,但是不能只是努力,很多时候借力比努力更重要,然后还要有仰望星空的创新点和启发点。建议读者按目录次序逐一浏览,免得骤然跌入幽暗的迷宫找不到来时的路,它不足为你揭示全部问题的答案,但若能解答你胸中升起的一朵朵疑云,也未尝不会酿成晚霞斑斓的别一番景致,万一它给你带来了一场精神世界的苦雨,那就借机洗刷一下原来存放在那儿的“躺平”上的尘埃吧。

     或许,雨过云收,神驰的天地更清朗.......🔎🔎🔎

💥1 概述

基于GOOSE算法优化VMD参数及多适应度函数切换的研究

一、GOOSE算法原理及优化机制

鹅优化算法(GOOSE Algorithm)是一种新型群智能优化算法,灵感来源于鹅群在觅食与警戒时的群体行为。其核心机制包括开发阶段探索阶段的动态平衡:

  • 开发阶段:模拟鹅群通过单腿站立保持平衡的行为,利用物理参数(如石头重量、下落时间、声音传播距离)调整搜索空间的边界和精度,计算公式涉及石头重量 WW、下落速度 vv、距离 DD 等参数,以确定最优解候选区域。
  • 探索阶段:通过随机变量 bb 控制个体随机唤醒,引入正交学习(Orthogonal Learning)机制,利用正交向量探索多维空间,避免局部最优。
  • 自适应调整:算法通过参数 αα 和 cc 动态调整搜索分辨率,结合随机扰动增强全局搜索能力,确保快速收敛和高精度。
二、VMD参数优化需求与挑战

变分模态分解(VMD)的性能高度依赖两个关键参数: 模态数 K 和 惩罚因子 α :

  • K 过大:导致过分解,产生冗余模态;K 过小:信号特征未被充分提取。
  • α 过大:模态带宽过窄,噪声敏感;α 过小:模态重叠,分离不彻底。
    传统方法依赖经验设定参数,而优化算法(如GOOSE)通过适应度函数自动搜索最优组合,提升分解效果。
三、适应度函数的设计与切换机制

适应度函数用于量化VMD分解后信号的质量,用户可选择以下五种指标:

  1. 最小包络熵(Minimum Envelope Entropy)

    • 物理意义:衡量信号稀疏性,熵值越低表明模态中有效特征(如故障冲击)越显著。
    • 计算步骤
  2. 对每个模态分量 ui(t)ui​(t) 进行希尔伯特变换,得到包络信号 hi(t)hi​(t);

  3. 归一化包络:ei=hi/∑hj​;

  4. 计算熵:Ev=−∑eilg⁡ei​,选取最小值作为适应度值。

  5. 样本熵(Sample Entropy)

    • 特点:对短时噪声鲁棒性强,反映时间序列复杂度。熵值低表示序列规律性强,适合提取周期性特征。
    • 计算:统计相似子序列的条件概率,负对数运算后得到熵值,计算复杂度低于近似熵。
  6. 信息熵(Information Entropy)

    • 定义:基于香农熵,度量信号不确定性。适用于评估模态分量的信息纯度,熵值低表示信号集中度高。
    • 公式:H(D)=−∑pklog⁡2pk,其中 pk 为信号幅值分布概率。
  7. 排列熵(Permutation Entropy)

    • 应用场景:分析非线性时间序列的动态复杂性,对信号微小变化敏感,适合检测混沌特征。
    • 步骤:重构相空间,统计序数模式概率 PjPj​,计算 Hp=−∑Pjln⁡Pj​。
  8. 排列熵/互信息熵(Composite PE/MIE)

    • 组合意义:结合排列熵(PE)的复杂性评估与互信息熵(MIE)的依赖关系分析,平衡模态的独立性与信息量。
    • 反映模态间相关性。

切换机制:通过代码中的条件分支(如 if xz == 1)动态选择适应度函数,调用对应的计算模块。

四、GOOSE优化VMD参数的实现流程
  1. 初始化:设定GOOSE种群规模、迭代次数,随机生成 (K,α)(K,α) 初始解集。
  2. 适应度计算:对每个候选参数组合执行VMD分解,根据选定函数计算适应度值。
  3. 位置更新
    • 开发阶段:根据石头物理模型更新领导者位置,公式为 xit+1=xit+α⋅rand⋅(xleader−xit)xit+1​=xit​+α⋅rand⋅(xleader​−xit​);
    • 探索阶段:随机扰动个体位置,结合正交学习扩展搜索方向。
  4. 边界处理与迭代:修正超界参数,循环至满足终止条件,输出最优 (K,α)(K,α)。
五、应用案例与优势分析
  • 案例:在轴承故障诊断中,GOOSE优化后的VMD分解能有效分离噪声与冲击成分,包络谱中故障特征频率更清晰。
  • 优势
    • 多目标兼容性:五种适应度函数覆盖不同场景需求,如包络熵适合机械故障,排列熵适合混沌信号。
    • 算法效率:GOOSE的收敛速度优于遗传算法和粒子群优化,适应高维参数搜索。
    • 鲁棒性:正交学习与随机扰动避免早熟收敛,适合复杂信号处理任务。
六、总结与展望

本研究通过GOOSE算法实现了VMD参数的自适应优化,并结合多适应度函数增强了算法的适用性。未来可进一步探索:

  1. 动态权重组合:设计加权多目标函数,提升指标间的协同效应。
  2. 并行计算:利用GPU加速GOOSE的种群评估,应对大规模信号处理需求。
  3. 跨领域验证:在生物医学信号(如EEG)和金融时间序列中测试算法普适性。

通过以上方法,GOOSE-VMD框架为信号处理与故障诊断提供了高效、灵活的解决方案。

📚2 运行结果

2.1 最小包络熵作为适应度函数

2.2 最小样本熵作为适应度函数

2.3 最小信息熵作为适应度函数

2.4 最小排列熵作为适应度函数

2.5 复合指标作为适应度函数

该指标出自文献:鲁铁定,何锦亮,贺小星等.参数优化变分模态分解的GNSS坐标时间序列降噪方法[J/OL].武汉大学学报(信息科学版),1-15[2024-02-29].https://doi.org/10.13203/j.whugis20220363.

部分代码:

%% 最小排列熵的适应度函数
function [ff] = compositeEntropyCost(c,data)

X = data;
alpha = fix(c(1));       % moderate bandwidth constraint:适度的带宽约束/惩罚因子
K = fix(c(2));              % modes:分解的模态数    
%--------------- Run actual VMD code:数据进行vmd分解---------------------------
[u, u_hat, omega] = vmd(X,'PenaltyFactor', alpha,'NumIMF',K);
u=u';
M = 3;  % 嵌入维数
T = 1;  % 延迟时间
for i = 1:K
    fitness1 = PermutationEntropy(u(i,:),M,T);  %这里直接调用信息熵函数
    fitness2 = calmi(u(i,:)',X);  %这里直接调用信息熵函数
    fitness(i) = fitness1/fitness2;
end
[ff] = min(fitness);
end

🎉3 参考文献 

文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。(文章内容仅供参考,具体效果以运行结果为准)

[1]王孔贤,邵英,王黎明.基于NGO-VMD-DE的单相接地故障信号特征提取[J].电子测量技术, 2023, 46(4):60-68.

[2]王洪金,常珊,何赟泽,等.基于GOOSE-VMD的GaN HEMT器件应力波检测与分析[J].电子测量与仪器学报, 2024, 38(10):78-87.

[3] 鲁铁定,何锦亮,贺小星等.参数优化变分模态分解的GNSS坐标时间序列降噪方法[J/OL].武汉大学学报(信息科学版),1-15[2024-02-29].

🌈Matlab代码实现

资料获取,更多粉丝福利,MATLAB|Simulink|Python资源获取

                                                           在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值