💥💥💞💞欢迎来到本博客❤️❤️💥💥
🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。
⛳️座右铭:行百里者,半于九十。
📋📋📋本文目录如下:🎁🎁🎁
目录
💥1 概述
文献来源:
光伏集群与需求响应结合的电能共享模型研究
摘要:在光伏上网电价低于市电电价的环境下,光伏用户通过集群的方式实现电能共享,可以获得比单独运行更好的效益。为了使光伏用户群内各经济主体能实现有序的电能交易,提出了一种基于光伏电能供需比(SDR)的内部价格模型。在考虑经济性和舒适度的基础上,提出了用户参与需求响应(DR)的效用成本模型。由于内部电价是以各时段光伏用户群内的供需比为基础,用户之间针对电价的需求响应行为可构成非合作博弈,在证明该博弈问题存在纳什均衡解的基础上,提出了分布式优化算法对用户的纳什均衡策略进行求解。最后,通过实际算例验证了所提模型在减少用电成本、提高光功率互用水平上的有效性。
关键词:
光伏用户群是分布式光伏发展到一定程度的自然产物。由一定数量用户组成光伏用户群,一方面
可利用用户间的用电行为差异,在集群内共享光伏发电量,减少向大电网倒送的功率;另一方面,这些共享的电能能够以内部电价交易,能使买卖双方获益。因此,需要有合理的集群内部电价 定 价 机制,使得各用户均能从中受益。同时,在考虑需求响应的基础上,内部电价还能
够有效引导用户的用电行为,进一步提高光伏用户群的光功率共享水平。
针对类似系统的内部定价方法,国内外已经具有了一些成果,总体可分为两类。第一类是使用边
际成本来定价:文献[6]利用电力市场的边际成本和边际收益作为其定价策略,用以管理微电网的能量不平衡;文献[7]通过每个微电网的边际发电成本制定动态电价,解决互联微电网间的功率分配问题;文献[8]提出了基于内部电价的微电网用户侧需求响应模型,制定微电网的动态内部电价,根据用户对电价的响应,调整整个微电网的用电行为;文献[9]同样使用了边际成本定工业型微电网的内部电价,用来减少整个企业的用电成本。另一类是根据给定的定价规则来制定内部电价:文献[10]从智能电网聚合服务商的角度,根据总用电量设定实时电价,在用户最大化自身收益的同时,使聚合服务商的收益最大;文献[11]对包含有储能的光伏微电进行了优化运行研究。通过微电网内部的供需关系,提出了按定价规则统一定价和竞价定价两种定价策略,
并给出了两种策略下的博弈模型。
光伏用户群的结构示意图如图1所示。光伏用户群由分布式光伏用户组成,每个用户包含有光伏
发电系统和负荷。所有的用户通过光伏共享服务商(简称服务商)连接到大电网,且通过服务商进行电能交易。
对于分布式光伏用户,首选光功率自消纳,光功率过剩时由服务商按内部购电电价收购,光伏功率
不足时从服务商按内部售电电价购电。对于邻近的分布式光伏用户,其光照和温度等外部环境相同,导致光功率输出特性大致相同,但是由于不同用户间的负荷特性普遍存在差异,因此净功率的差异为光功率互用提供了基础条件。服务商相当于是实现分布式光伏电能共享的代理,在集群中提供按照规则制定内部定价以及电量、电费结算服务。由于服务商提供结算服务,因而需保证每个时刻光伏用户群的功率和收支平衡。当光伏用户群内部功率不足时,服务商需要向大电网购电;而当内部 功 率 出 现 盈 余 时,则需要向大电网售电。也就是说,光伏用户群内外的所有电能交易都是通过服务商进行。对于收支平衡,需要根据集群的整体运行情况分别加以描述。当集群需要从电网购电时,需要保证从购电用户处收取的购电费用等于支付给卖电用户的卖电费用加上付给电网的购电费用;当集群向电网卖电时,需要保证从购电用户处收取的购电费用加上向电网卖电的收入等于支付给卖电用户的卖电费用。服务商作为独立的第三方,为集群中的用户提供代理服务,收取固定的服务费。
一、光伏集群的定义与核心特征
光伏集群是由地理邻近或电气特性互补的分布式光伏发电单元、储能系统及负荷组成的集合体,具备以下核心特征:
- 动态聚合性:集群不仅包含光伏系统,还整合了储能、柔性负荷等资源,通过动态划分(如基于功率相似性或空间相关性的K-means++算法)形成可灵活调整的能源单元。
- 分层调控架构:采用“集群-子集群-电站”三级控制结构,通过功率跟踪、分配和执行实现多时间尺度协调,例如利用NWP(数值天气预报)信息进行动态分群以优化出力曲线。
- 自治与协同能力:集群内部通过自律控制实现功率平衡,集群间通过通信交互协同处理电压越限等事故。例如,云南某区域光伏集群通过平滑效应系数量化集群聚合后的出力波动降低效果。
与微电网的差异在于:光伏集群更强调资源聚合而非独立运行,且划分依据不限于地理边界,而是包含电气互补性、数据相似性等多元指标。
二、需求响应在电力市场中的关键机制
需求响应(DR)通过市场信号引导用户调整用电行为,主要分为两类:
- 价格型DR:包括分时电价、实时电价、尖峰电价等,通过电价差异引导用户移峰填谷。例如,山东将DR补偿单价与现货市场节点电价挂钩,实现成本分摊市场化。
- 激励型DR:如可中断负荷、直接负荷控制,用户自愿参与并获得经济补偿。负荷聚合商(如虚拟电厂)通过整合分散资源参与市场竞价,提升响应规模效益。
技术支撑方面,智能电表、物联网和AI算法(如PSO优化LightGBM-BiLSTM组合模型)提升了响应精度和实时性。
三、光伏集群与需求响应的协同应用场景
-
虚拟电厂(VPP)
集成光伏、储能及DR资源形成VPP,通过内部电价模型(如基于供需比SDR的动态定价)实现电能共享。用户通过非合作博弈优化用电策略,集群整体收益提升15%-20%。 -
动态分群与功率预测
基于短期功率预测的集群动态划分策略:- 数据预处理:四分位法清洗数据,插值填充缺失值。
- 集群划分:利用功率相似性指标和K-means++算法分群,对无数据的光伏节点采用空间相关度分析归类。
- 动态更新:根据天气波动(如多云日引入地基云图特征)修正集群边界,提升预测精度。
-
多时间尺度能源共享
在日前市场(HA阶段)优化储能容量租赁,在实时市场(15MA阶段)协调DER调度,通过分布式算法解决AGGs与DSOs的不确定性。例如,意大利某能源社区通过共享电力将外购电量减少85%。
四、核心挑战与技术瓶颈
-
数据与预测难题
- 海量分布式光伏存在数据缺失、质量低等问题,需依赖相似日理论和空间相关性分析补全数据。
- 多云天气下出力波动剧烈,需融合地基云图信息修正预测模型。
-
市场机制设计
- 内部电价需平衡用户经济性与舒适度,例如基于Stackelberg博弈的定价模型需避免用户因收益不公退出共享。
- 成本分摊机制需与现货市场衔接,如山东的“谁受益、谁承担”模式仍需优化补贴与市场价格的平衡。
-
技术集成复杂性
- 集群调控需协调多层级优化(如外层分时电价优化、内层电压约束求解的双层模型),算法收敛性和计算效率面临挑战。
- V2X技术(如车棚光储充一体化)需解决双向充放电控制与电网交互的稳定性问题。
五、现有模型研究进展
-
非合作博弈模型
刘念等提出基于SDR内部电价和效用成本模型的分布式优化算法,用户通过纳什均衡策略降低用电成本10%-25%,光伏共享量提高30%。 -
双层优化模型
外层采用PSO优化分时电价,内层通过灵敏度排序评估光伏承载能力,确保不向主网反送电。该模型在33节点系统中验证了电压偏差控制的有效性。 -
多主体协同模型
结合主从博弈与Stackelberg博弈,光伏服务商制定电价策略,用户调整负荷响应,实现集群收益与用户舒适度双目标优化。
六、未来研究方向
- 智能化技术深化:探索联邦学习解决数据隐私问题,利用数字孪生技术模拟集群动态行为。
- 政策与市场创新:推动DR从计划模式向全市场化转型,完善容量补偿与辅助服务市场规则。
- 多能互补扩展:研究“光伏+储能+氢能”多能流协同,提升系统灵活性(如云南区域模型提出的电碳耦合规划)。
总结
光伏集群与需求响应的结合,通过动态分群、市场机制和协同优化,显著提升了新能源消纳与电网稳定性。然而,数据质量、算法效率及政策配套仍是关键瓶颈。未来需融合智能技术、完善市场设计,推动分布式能源系统向高效、弹性方向演进。
📚2 运行结果
🎉3 参考文献
部分理论来源于网络,如有侵权请联系删除。
[1]刘念,王程,雷金勇.市场模式下光伏用户群的电能共享与需求响应模型[J].电力系统自动化,2016,40(16):49-55+131.