- 博客(8)
- 收藏
- 关注
原创 “pip list版本和import版本不一致”问题解决方案
sys.path在python脚本执行时动态生成,它返回的是一个列表,包含2-6的五个部分。根本原因是,我的项目中的timm源码文件夹和pip管理的timm冲突了。python在运行时,会按照指定的路径进行包的搜索,且在搜索的过程中路径。为什么pip list里面的包版本和import的包版本不一致?需要做的,就是看看这些路径下是否有模块冲突了。
2024-05-03 16:33:00 546
原创 (3)Papar Reading——Regularization of deep neural networks with spectral dropout
2012年ImageNet挑战的重大突破部分是由于使用了“Dropout”技术来避免过拟合。在这里,我们引入了一种名为“Spectral Dropou”的新方法来提高深度神经网络的泛化能力。我们使用固定基函数的去相关变换将所提出的方法转换为正则卷积神经网络(CNN)权层的形式。我们的Spectral Dropou方法通过消除神经网络激活的弱的和“噪声”的傅立叶域上的系数来防止过拟合,从而得到比当前正则化方法明显更好的结果。此外,由于使用固定基函数进行谱变换,因此该方法的效率很高。
2024-03-19 10:00:00 750 1
原创 (2)Papar Reading——Stochastic Frequency Masking to Improve Super-Resolution and Denoising Networks
超分辨率和去噪是病态图像恢复的基本任务。在盲设置中,退化核或噪声水平是未知的。这使得恢复更具挑战性,特别是对于基于学习的方法,因为它们倾向于过度拟合训练期间看到的退化。我们在频域对超分辨率下的退化核过拟合进行了分析,并引入了一种扩展到超分辨率和去噪的条件学习视角。在我们的公式的基础上,我们提出了训练中使用的图像的随机频率掩蔽,以正则化网络并解决过拟合问题。该技术改进了不同合成核的盲超分辨率、真实超分辨率、盲高斯去噪和真实图像去噪。
2024-03-18 01:47:07 647
原创 (1)Papar Reading——Vision Mamba: Efficient Visual Representation Learning with Bidirectional SSM
最近,具有高效硬件感知设计的状态空间模型(SSMs),即Mamba,在长序列建模方面显示出巨大潜力。纯粹基于SSMs构建高效通用的视觉backbone是一个有吸引力的方向。然而,由于视觉数据的位置敏感性和视觉理解对全局上下文的要求,对于ssm来说,视觉表示数据是一个挑战。在本文中,我们证明了视觉表示学习对自注意力的依赖并非必要,并提出了一种新的具有双向Mamba块(Vim)的通用视觉骨干,它使用位置嵌入标记图像序列,并利用双向状态空间模型压缩视觉表示。
2024-01-25 16:58:50 2100
原创 python报错TypeError: ‘NoneType‘ object is not subscriptable的解决方法
找到报错的那行代码,然后看看里面是不是有变量是None了。如报错所示:空类型对象不可以使用下标。
2023-04-30 15:35:29 2744 2
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人