分治法---------最大子数组

分治法实现求解最大子数组问题

一、最大子数组问题描述

给定一个整数数组 nums ,找到一个具有最大和的连续子数组(子数组最少包含一个元素),返回其最大和。

例子:
输入: [-2,1,-3,4,-1,2,1,-5,4],
输出: 6
解释: 连续子数组 [4,-1,2,1] 的和最大为 6。
题目源于力扣网

二、分治法三步骤

1.分解原问题:将问题划分成一些子问题,子问题相互独立且与原问题相同,只是规模更小。
2.解决子问题:递归求解子问题。当子问题足够小,不能划分直接求解。
3.合并问题解:将子问题的解合并成原问题的解。

三、求解最大子数组组

分治法求解就是找三个子区域内的数组最大和:

1)完全位于子数组A[left…mid]中, left<=i<=j<=mid;

2)完全位于子数组A[mid + 1…right]中,mid<=i<=j<=right;

3)跨越了中点,left<=i<=mid<j<=right;

最后我们的解一定是在这三个部分中的最大的那一个。

/*输入: [-2,1,-3,4,-1,2,1,-5,4],
输出: 6
解释: 连续子数组 [4,-1,2,1] 的和最大为 6。*/
#include<iostream>
using namespace std;
int FindMaxCrossArray(int a[],int left,int right)//用于求跨过中点的最大子数组和
{
	int sum = 0;//用于存放数组的和
	int leftsum=0;//用于存放数组下标left~mid之间最大和
	int rightsum=0;//用于存放数组下标mid+1~right之间最大和
	int mid=(left+right)/2;//下标最中间
	int i;
	for(i=mid;i>=left;i--)
	{
		sum+=a[i];
		if(sum > leftsum)
			leftsum=sum;
	}
	sum=0;//sum需要重新归为0
	for(i=(mid+1);i<=right;i++)
	{
		sum+=a[i];
		if(sum > rightsum)
			rightsum=sum;
	}
	return leftsum+rightsum;
}
int FindMax(int a[],int left,int right)
{
	int leftmax,rightmax,crossmax;
	int mid;
	mid = (left+right)/2;
	if(left==right)
		return a[left];
	else
	{
		leftmax = FindMax(a,left,mid);//利用递归划分数组
		rightmax = FindMax(a,mid+1,right);//利用递归划分数组
		crossmax = FindMaxCrossArray(a,left,right);
	}
	if(leftmax>=rightmax && leftmax>=crossmax)
		return leftmax;
	else if (rightmax>=leftmax && rightmax>=crossmax)
		return rightmax;
	else
		return crossmax;
}
int main(void)
{
	int a[100],n;
	cout<<"Input Array Length"<<endl;
	cin>>n;
	cout<<"Input Array"<<endl;
	for(int i=0;i<n;i++)
	{
		cin>>a[i];
	}
	cout<<"最大子数组和为:"<<FindMax(a,0,n-1)<<endl;
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值