教育平台的线上课程智能推荐策略-Python

本文分析了线上教育平台的用户活跃度,通过Python进行数据预处理、用户流失率计算及课程受欢迎度评估。利用协同过滤算法实现课程推荐,旨在提升用户体验和用户留存。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1 背景

近年来,随着互联网与通信技术的高速发展,学习资源共享与建设呈现出新的发展趋势,多样化的线上教育平台如雨后春笋般争相涌入大众视野。尤其是自2020年初,受新冠肺炎疫情的冲击,学生返校进行线下 授课受到严重阻碍,由此,网络线上平台由此成为“互联网+教育”成果的重要发展领地,如何根据教育 平台把握用户信息,掌握用户课程偏好并提供精准的远程课程推荐服务成为了线上教育的热点话题。因此, 利用数据分析技术对教育平台的线上信息和用户学习信息进行研究具有重大意义。

2 挖掘目标

1. 分析平台用户的活跃情况,计算用户的流失率,为平台管理决策提供建议。

2. 分析线上课程的受欢迎程度,构建课程智能推荐模型,为教育平台的线上推荐服务提供策略。

3 数据说明

本案例使用3个数据集,包含users.csv(用户信息表)、study_information.csv(学习详情表)和 login.csv(登录详情表)3个数据表。

users.csv数据说明:

特征名称 特征说明
users user_id 用户id
register_time 注册时间
recently_logged 最近访问时间
number_of_classes_join 加入班级数
number_of_classes_out 退出班级数
learn_time 学习时长(分)
school 用户所属学校
study_information user_id 用户id
course_id 课程id
course_join_time 加入课程的时间
learn_process 学习进度
price 课程单价
login user_id 用户id
login_time 登录时间
login_place 登录地址

流程:

 4 数据分析

4.1 导入第三方库

本文所用的库的版本分别为:

numpy的版本: 1.21.2
pandas的版本: 1.3.3
chinese_calendar的版本为: 1.5.0
pyecharts的版本: 1.9.0
scipy的版本: 1.3.1
import numpy as np
import pandas as pd
from chinese_calendar import is_workday  # 用于判断是否为工作日
from pyecharts.charts import Map
from pyecharts import options as opts
from pyecharts.charts import Geo
import matplotlib.pyplot as plt
import scipy.spatial.distance as dist    #距离计算库
import re

plt.rcParams['font.sans-serif'] = 'SimHei'
plt.rcParams['axes.unicode_minus'] = False

4.2 数据加载

因为数据中包含中文,因此encoding使用gbk格式。

# 用户信息表
users = pd.read_csv('./users.csv',encoding='gbk')
users.head()

# 学习详情表
study_info = pd.read_csv('./study_information.csv',encoding='gbk')
study_info.head()

# 登录详情表
login = pd.read_csv('./login.csv',encoding='gbk')
login.head()

代码运行结果分别为:

用户详情表

 学习详情表

登录详情表

 数据大小:

users.shape
# (43983
评论 7
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值