【Acwing 周赛复盘】第86场周赛复盘(2023.1.14)

【Acwing 周赛复盘】第86场周赛复盘

周赛复盘 ✍️

本周个人排名:678/2358

AC情况:2/3

这是博主参加的第一次周赛,深刻体会到了世界的参差 😂

看到排名 TOP3 的大佬都是不到 5 分钟内就 AK 了,真是恐怖如斯(ORZ)

对比下来,自己做满 75 分钟并且只 AC 了 2 题真是弱爆了。。。

希望未来也能继续努力,紧跟大佬们的步伐,继续加油 💪



周赛信息 📚

时间:2023年1月14日19:00-20:15

竞赛链接https://www.acwing.com/activity/content/2794/

y总直播间http://live.bilibili.com/21871779

y总录播讲解视频【AcWing杯 - 第86场周赛讲解】


题目列表 🧑🏻‍💻

题目名称原题链接难度
4794. 健身原题链接简单 🟢
4795. 安全区域原题链接中等 🟡
4796. 删除序列原题链接困难 🔴

题解 🚀

🍉 PS:推荐前往摊主的个人博客查看该题解,可以有更好的阅读体验

主站点:【Acwing 周赛复盘】第86场周赛复盘

备用站点:【Acwing 周赛复盘】第86场周赛复盘

【题目A】健身

【题目描述】

李华一共要进行 n n n 组健身训练。

其中,第 i i i 组训练的时长 a i a_i ai

李华只做三种运动:胸部(chest)运动、二头肌(biceps)运动、背部(back)运动。

而且,三种运动是循环训练的,也就是说他第一组训练是胸部运动,第二组训练是二头肌运动,第三组训练是背部运动,第四组训练是胸部运动,第五组训练是二头肌运动…以此类推直到做完第 n n n 组训练。

请你计算,他做哪种运动的 时长 最长。

【输入】

第一行包含整数 n n n

第二行包含 n n n 个整数 a 1 , a 2 , … , a n a_1,a_2,…,a_n a1,a2,,an

【输出】

共一行,如果训练时长最长的运动为:

  • 胸部运动,则输出 chest
  • 二头肌运动,则输出 biceps
  • 背部运动,则输出 back

数据保证训练时长最长的运动是唯一的。

【数据范围】

3 3 3 个测试点满足 1 ≤ n ≤ 7 1 \le n \le 7 1n7
所有测试点满足 1 ≤ n ≤ 20 1 \le n \le 20 1n20 1 ≤ a i ≤ 25 1 \le a_i \le 25 1ai25

【输入样例1】
2
2 8
【输出样例1】
biceps
【输入样例2】
3
5 1 10
【输出样例2】
back
【输入样例3】
7
3 3 2 7 9 6 8
【输出样例3】
chest
【原题链接】

https://www.acwing.com/problem/content/4797/


【题目分析】

签到题,简单模拟即可。(但是现场编写的代码有很多可以改进和优化的地方,见下面「代码对比总结」部分)

【复盘后的优化代码】✅
#include<bits/stdc++.h>

using namespace std;

int s[3];

int main() {
    ios::sync_with_stdio(false);  //cin读入优化
    cin.tie(0);

    int n;
    cin >> n;

    int x;
    for (int i = 1; i <= n; ++i) {
        cin >> x;
        // 下面的写法避免了多个if
        s[i % 3] += x;  // s[1]存储chest、s[2]存储biceps、s[0]存储back
    }

    // 找到最大值下标
    int k = 0;
    for (int i = 1; i <= 2; ++i) {
        if (s[i] > s[k])
            k = i;
    }
  
    // 输出结果
    if (k == 1) cout << "chest" << endl;
    else if (k == 2) cout << "biceps" << endl;
    else cout << "back" << endl;
    
    return 0;
}
【周赛现场 AC 代码】
#include<bits/stdc++.h>

using namespace std;

int n, tmp;
int chest,biceps,back;

int main() {
    ios::sync_with_stdio(false);  //cin读入优化
    cin.tie(0);

    cin >> n;
    for (int i = 1; i <= n; ++i) {
        cin >> tmp;
        if (i % 3 == 1) {
            chest += tmp;
        } else if (i % 3 == 2) {
            biceps += tmp;
        } else {
            back += tmp;
        }
    }
//    cout << chest << " " << biceps << " " << back << endl;

    if (chest > biceps) {
        if (chest > back) {
            cout << "chest" << endl;
        } else {
            cout << "back" << endl;
        }
    } else {
        if (biceps > back) {
            cout << "biceps" << endl;
        } else {
            cout << "back" << endl;
        }
    }

    return 0;
}
【代码总结分析】
  • s[i%3] += x 的思路值得借鉴,省去了多个 if 判断
  • 寻找最大值下标的方式值得借鉴,优化了直接比较的多 if 判断


【题目B】安全区域

【题目描述】

给定一个 n × n n×n n×n 的方格棋盘和 m m m 个国际象棋中的车。

对于一个方格,如果该方格满足以下两个条件中的至少一个,则该方格会被车攻击到:

  • 该方格内有车。
  • 至少有一个车与该方格位于同一行或同一列。

现在,我们要将 m m m 个车逐个放入到棋盘中,其中第 i i i 个车放到棋盘的第 x i x_i xi 行第 y i y_i yi 列的方格中。

车的编号从 1 1 1 m m m,行/列的编号从 1 1 1 n n n

保证任意两个车不会放到同一个方格中。

对于 1 ≤ i ≤ m 1 \le i \le m 1im,请你计算,将前 i i i 个车放入到棋盘中后,有多少个方格不会被车攻击到。

【输入】

第一行包含两个整数 n , m n,m n,m

接下来 m m m 行,其中第 i i i 行包含两个整数 x i , y i x_i,y_i xi,yi,表示第 i i i 个车放到棋盘的第 x i x_i xi 行第 y i y_i yi 列的方格中。

【输出】

共 1 行,其中第 i i i 行输出将前 i i i 个车放入到棋盘中后,不会被车攻击到的方格数量。

【数据范围】

前 33 个测试点满足 1 ≤ m ≤ 3 1 \le m \le 3 1m3
所有测试点满足 1 ≤ n ≤ 1 0 5 1 \le n \le 10^5 1n105 1 ≤ m ≤ m i n ( 1 0 5 , n 2 ) 1 \le m \le min(10^5,n^2) 1mmin(105,n2) 1 ≤ x i , y i ≤ n 1 \le x_i,y_i \le n 1xi,yin

【输入样例1】
3 3
1 1
3 1
2 2
【输出样例1】
4 2 0
【输入样例2】
5 2
1 5
5 1
【输出样例2】
16 9
【输入样例3】
100000 1
300 400
【输出样例3】
9999800001
【原题链接】

https://www.acwing.com/problem/content/4798/


【题目分析】

思维题,需要通过 数学推导 的方式,得到未被攻击的方格数数量为: ( n − c ) ∗ ( n − r ) (n-c)*(n-r) (nc)(nr),其中 c , r c,r c,r 为被攻击的列数、行数

🍉 PS:本题数据范围较大,需要使用 long long 类型,不然会报错。(在公式前强制转换即可:(ll)(n-c)*(n-r)

【复盘后的优化代码】✅
#include<bits/stdc++.h>

using namespace std;

typedef long long ll;
const int N = 1e5 + 10;
int n, m, x, y;
int a[N], b[N];

int main() {
    ios::sync_with_stdio(false);  //cin读入优化
    cin.tie(0);

    cin >> n >> m;
    int row = 0, col = 0;
    for (int i = 1; i <= m; ++i) {
        cin >> x >> y;
      
      	// 统计当前被攻击的行数、列数
        if (!a[x]) a[x] = 1, row++;
        if (!b[y]) b[y] = 1, col++;

        // 求剩余个数的公式,该形式容易推导和记忆
        cout << (ll) (n - row) * (n - col) << " ";
    }

    return 0;
}
【周赛现场 AC 代码】
#include<bits/stdc++.h>

typedef long long ll;
using namespace std;

const int N = 1e5 + 10;
int a[N], b[N];
int n, m, x, y;
ll ans[N];

int main() {
    ios::sync_with_stdio(false);  //cin读入优化
    cin.tie(0);

    cin >> n >> m;
    ll sum = (ll) n * n;

    int row = 0, col = 0;
    for (int i = 1; i <= m; ++i) {
        cin >> x >> y;
        if (!a[x]) a[x] = 1, row++;
        if (!b[y]) b[y] = 1, col++;
        cout << (ll) sum - (ll) row * n - (ll) col * (n - row) << " ";
    }

    return 0;
}
【代码对比总结】
  • 推导的公式,可以写成 ( n − c ) ∗ ( n − r ) (n-c)*(n-r) (nc)(nr) 这样更加 简洁且容易记忆 的形式。
  • 在使用 (ll)强制转换 时,需要注意 哪些项会爆 int。(本次周赛敲代码时,由于没有考虑该问题,以为在最前面加上 (ll) 就能整体转换,导致 (ll) sum - row * n - col * (n - row) 这样 爆int 的错误没能被及时发现,极大的影响了 AC 时间和心态)


【题目C】删除序列

【题目描述】

给定一个长度为 n n n 的正整数序列 a 1 , a 2 , … , a n a_1,a_2,…,a_n a1,a2,,an

你可以进行任意次删除操作。

每次删除操作分为两步:

  1. 选择序列中的一个元素(不妨设其元素值为 x x x),并将这 一个 元素删除,这可以给你加 x x x 分。
  2. 所有元素值 x − 1 x−1 x1 x + 1 x+1 x+1 的元素(如果有的话)从序列中删除,这不会给你带来任何分数。

请计算,通过删除操作,你可以获得的最大得分。

【输入】

第一行包含整数 n n n

第二行包含 n n n 个正整数 a 1 , a 2 , … , a n a_1,a_2,…,a_n a1,a2,,an

【输出】

一个整数,表示可以获得的最大得分。

【数据范围】

6 6 6 个测试点满足 1 ≤ n ≤ 10 1 \le n \le 10 1n10

所有测试点满足 1 ≤ n ≤ 1 0 5 1 \le n \le 10^5 1n105 1 ≤ a i ≤ 1 0 5 1 \le a_i \le 10^5 1ai105

【输入样例1】
2
1 2
【输出样例1】
2
【输入样例2】
3
1 2 3
【输出样例2】
4
【输入样例3】
9
1 2 1 3 2 2 2 2 3
【输出样例3】
10
【原题链接】

https://www.acwing.com/problem/content/4799/


【题目分析】

动态规划题,需要平时积累,详细讲解见 y总讲解录像:链接

image-20230115160302183

【复盘后的优化代码】✅
#include<bits/stdc++.h>

using namespace std;

const int N = 1e5 + 10;
typedef long long ll;

ll s[N], dp[N];
int n, x;

int main() {
    ios::sync_with_stdio(false);  //cin读入优化
    cin.tie(0);

    cin >> n;
    for (int i = 1; i <= n; ++i) {
        cin >> x;
        s[x] += x;  // s数组类似于"桶",这里的"桶"直接存储总和
    }

    // 动态规划
    for (int i = 1; i <= N - 1; ++i) {
        // 状态转移方程
        dp[i] = max(dp[i - 1], dp[(max(0, i - 2))] + s[i]);
    }

    cout << dp[N - 1] << endl;

    return 0;
}
【周赛现场 AC 代码】

该题现场未AC 😂

【代码对比总结】
  • 周赛现场没能看出本题为动态规划题,导致蛮力模拟一直解不出来。说明需要 多做题,多积累

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值