P1637 三元上升子序列 (权值线段树优化dp)

这篇博客主要介绍了如何利用动态规划和权值线段树解决寻找数组中三元上升子序列的对数问题。首先通过动态规划计算每个元素之前小于它的元素个数,然后利用线段树在O(n log n)的时间复杂度内完成统计,避免了暴力方法导致的时间超限。博主详细解释了代码逻辑,并展示了如何用线段树进行区间信息维护,以优化空间和时间效率。
摘要由CSDN通过智能技术生成

题目链接
在这里插入图片描述

首先我们很容易想到这题可以用dp来做,
d1[i]表示前i-1个元素中,小于a[i]的元素个数
d2[i]表示前i个元素中三元上升子序列的对数
转移过程非常朴素,见代码

#include<bits/stdc++.h>
using namespace std;
#define ll long long
const int maxn = 1e5+7;
const int INF = 2e9+1;
int d1[maxn],d2[maxn];
int n,a[maxn];
ll ans=0;
int main()
{
   
    scanf("%d",&n);
    for(int i=1;i<=n;i++) scanf("%d",a+i);
    for(int i=2;i<=n;i++)
    {
   
        for(int j=1;j<i;j++)
        {
   
            if(a[j]<a[i]) d1[i]++;
        }
    }
    for(
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值