题意:给定n个杯子,第i个容量为a[i],暂时装有b[i]的水, 允许把某个杯子的水倒入另一个杯子,但是倒的过程会损失一半,且被倒入杯子的水的上限不超过其容量。 现在只能用k个杯子装水,问最多能得到多少水。(k∈[1,n])
(1<=n<=100,0<a[i]<=100)
分析:我们假设所有杯子总水量为S, 选出的k个杯子容量为v, 原有的水量之和为A, 那么把其他的水倒进这k个杯子 ,
最终答案ans=min(v , A+(S-A)/2) (其他杯子的水无论怎么倒 最少损失1/2)
可以看出最终的答案只和k个杯子原有水量和,容量和有关。这就是一个二维费用的01背包问题 。
dp[i][k][v] 表示前i个杯子,选k个,容量和为v的时候水量和的最大值。
最终答案ans=max(min( v , (dp[n][k][v]+S)/2 ) ) 枚举v即可
转移过程:
dp[i][k][v]=max(dp[i-1][k][v],dp[i-1][k-1][v-a[i]]+b[i])
利用滚动数组优化第1维
#include<bits/stdc++.h>
using namespace std;
#define ll long long
#define pii pair<int,int>
const int maxn = 1e2+5;
const int mx = 40;
const int mod = 1e9+5;
const ll inf = 34359738370;
const int INF = 1e9+5;
//给定n个杯子,
//容量a[i] 现在装有b[i]的水 可以把某个杯子的水倒进另一个 但会损失1/2的水 让你选择k(1到n)个杯子 问最多能得到多少水
//n<=100 a[i]<=100
//假设所有杯子总水量为S 选的k个杯子总水量为A 总容积为V 那么最终答案ans=min(V,A+(S-A)/2)
//所以答案只和选的k个杯子的总容积、水量和有关 用二维费用01背包的思路求出
//dp[i][k][v] 前i个 选k个 总体积为v的时候 水量和是多少
//dp[i][k][v]=max(dp[i-1][k][v],dp[i-1][k-1][v-a[i]]+b[i])
int n,a[maxn],b[maxn];
int dp[maxn][maxn*maxn];
int main()
{
#ifndef ONLINE_JUDGE
// freopen("data.in.txt","r",stdin);
// freopen("data.out.txt","w",stdout);
#endif
scanf("%d",&n);
for(int i=1;i<=n;i++)
{
scanf("%d %d",a+i,b+i);
a[0]+=a[i],b[0]+=b[i];
}
fill(dp[0],dp[0]+maxn*maxn*maxn,-INF);
dp[0][0]=0;
int tempv=0;
for(int i=1;i<=n;i++)
{
tempv+=a[i];
for(int k=i;k>=1;k--)
{
for(int j=tempv;j>=a[i];j--)
{
dp[k][j]=max(dp[k][j],dp[k-1][j-a[i]]+b[i]);
}
}
}
for(int k=1;k<=n;k++)
{
double ans=0;
for(int v=1;v<=a[0];v++)//总体积
{
ans=max(ans,min(v*1.0,(1.0*b[0]+dp[k][v])/2.0));
}
printf("%.10f ",ans);
}
return 0;
}