第二章 递归与分治策略

2.1 递归的概念

1、递归算法

递归算法:直接或者间接调用自身的算法称为递归算法。

2、适合递归算法的问题

  • 递归函数:用函数自身给出定义的函数。
  • 递归结构:二叉树。
  • 可以转化为递归算法解决。

3、典型递归程序示例

在这里插入图片描述
在这里插入图片描述

4、递归算法设计的一般步骤

在这里插入图片描述

5、递归解决实际问题-汉诺塔问题

在这里插入图片描述
在这里插入图片描述

# include<stdio.h>
void move(char a, char b){
	printf("从%c移到%c\n", a, b);
}

void hanoi(int n, char a, char b, char c){
	if(n == 0){
		return;
	}
	else{
		hanoi(n-1, a, c, b);
		move(a, b);
		hanoi(n-1, c, b, a);
	}
} 

int main(){
	char a = 'a';
	char b = 'b';
	char c = 'c';
	hanoi(10, a, b, c);
}

下面内容与上面是同样的思路:
递归关系:

  • 1、将n-1个盘子从from -> buffer
  • 2、将1个盘子从from -> to
  • 3、将n-1个圆盘从buffer -> to

终止条件:

  • 4、递归结束的条件是,只有一个盘子时,只需一次移动操作即可。
public class hanoi {
    public static void move(int n, String from, String buffer, String to) {
        //第一步:递归结束的条件
        if (n == 1) {
            System.out.println("from " + from + " to " + to);
            return;
        }
        // n-1 个圆盘从 from -> buffer
        move(n - 1, from, to, buffer);
        //将 1 个圆盘从 from -> to
        move(1, from, buffer, to);
        //将 n-1 个圆盘从 buffer -> to
        move(n - 1, buffer, from, to);
    }
    public static void main(String[] args) {
        hanoi.move(3, "石柱1", "石柱2", "石柱3");
    }
}

下面是在网上看到的关于递归的理解,感觉说的挺好的。
在这里插入图片描述
在这里插入图片描述

6、递归解决实际问题-排列问题

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

7、递归优缺点

  1. 优点:结构清晰,可读性强,而且容易用数学归纳法来证明算法的正确性,因此它为设计算法、调试程序带来很大方便。
  2. 缺点:递归算法的运行效率较低,无论是耗费的计算时间还是占用的存储空间都比非递归算法要多。

2.2 分治法的基本原理

1、分治法所解决问题的特征

1、原问题的规模缩小到一定的程度就可以容易地解决;
2、原问题可以分解为若干个规模较小的相同子问题;
3、合并子问题的解可以得到原问题的解;
4、子问题之间相互独立,即不同子问题不包含公共子问题。

2、分治法解决问题的基本思想

1、分解原问题:原问题分解成多个子问题
2、解决子问题:递归地求解各个子问题
3、合并问题解:将结果合并为原问题解
注意事项:1、子问题与原问题性质完全相同;2、子问题之间相互独立,可分别求解;3、最小子问题可直接求解

3、分治算法的基本框架

在这里插入图片描述

4、分治法的复杂性分析

在这里插入图片描述

2.3 分治法解集合运算

1、分治法示例-将数组元素升序排列

在这里插入图片描述

2、问题一:求数组中的最大值

问题一:n个元素存放在一维数组A中,试用分治法求A中元素的最大值。
在这里插入图片描述
时间复杂度:O(n)

#include<cstdio>
int max(int A[], int low, int high){
	if(low == high){
		return A[low];
	}else{
		int mid = (low + high) / 2;
		int a = max(A, low, mid);
		int b = max(A, mid+1, high);
		if(a > b){
			return a;
		}else{
			return b;
		}
	}
} 

int main(){
	int A[] = {8, 6, 5, 4, 3, 9, 7, 1, 2};
	printf("数组的最大值是:%d", max(A, 0, 8));
}

运行结果:
在这里插入图片描述

3、问题二:求数组中大于x的元素个数

问题二:n个整数存放在一维数组A中,试用分治法求A中大于x的元素个数。
在这里插入图片描述
时间复杂度:O(n)

#include<cstdio>
int com(int A[], int low, int high, int x){
	if(low == high){
		if(A[low] > x){
			return 1;
		}else{
			return 0;
		}
	}
	int mid = (low + high) / 2;
	int a = com(A, low, mid, x);
	int b = com(A, mid+1, high, x);
	return a+b;
}

int main(){
	int A[] = {8, 6, 5, 4, 3, 9, 7, 1, 2};
	printf("数组中大于6的元素个数是:%d", com(A, 0, 8, 6));
}

运行结果:
在这里插入图片描述

2.4 大整数乘法

问题描述:n位10进制整数X和Y,由于X和Y位数较大,若直接做乘法运算则可能会内存溢出,如何求X和Y的乘积?
在这里插入图片描述
计算策略:模拟竖式计算乘法过程,先用整型数组X,Y分别表示两个n位10进制整数,其中X[0]表示位数,X[1]表示正负号,X[2]是个位数,X[3]是十位数,依次类推;然后逐位相乘再相加得到X和Y乘积,最后将结果存放到Z数组。按这种策略计算的时间复杂度为O(n²)。
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

2.5 Strassen矩阵乘法

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

2.6 棋盘覆盖问题

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

2.7 分治法进行排序

1、合并排序

基本思想:将待排序元素分成大小大致相同的两个子集合,分别对两个子集合进行排序,最终将排好序的子集合合并成为所要求的排好序的集合。
基本操作:

  • 分:分成大小大致相同的子集合。
  • 治:分别对两个子集合进行排序。
  • 合:将排好序的子集合合并成一个有序的集合。

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

2、快速排序

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

2.8 循环赛日程表

在这里插入图片描述
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

坚持写博客的正

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值