电动汽车续驶里程研究2021-10-08

2021年10月8日科研周报

在最新的数据集中,里面并没有续驶里程这列数据,只有累计里程,于是我们把数据集分成了单次放电的状态,通过研究单次放电时SOC和已经行驶里程的关系,进而推到SOC和续驶里程的关系。

注:

我对行驶里程的测算方法是,找到一个时间点(初始时间),此时SOC为100,之后的一段时间为放电状态,在放电的某个时间点,累计里程减去初始时间的累计里程,即得到,消耗这么多SOC电量后,车辆的行驶里程。
image-20211008214240426

这里,SOC从100变为96,就走了1.5km

我们取了两段放电状态test1(2020/7/7 15:01:30)和test2(2021/3/5 9:14:27),一段用于观测各列变量和车辆行驶里程的相关性,同时用来训练KNN模型,另一段用于作为测试集,检验模型的正确性。

image-20210929200146885

这段数据集中,虽然中途有段缺失的数据,但我们还是可以看出,SOC和行驶里程具有很强的线性相关性。

image-20210929200258011

从这部分图来看,电池单体电压最低值和行驶里程也具有不错的相关性

image-20210929200424751

从这部分图来看,电池单体电压最高值和行驶里程也具有不错的相关性

所以,我们好像可以综合考虑电池单体电压最低值,电池单体电压最高值,SOC

image-20211007163343452

同时我们也可以通过电池单体电压最低值,电池单体电压最高值来求SOC的值

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-soGdznJ4-1633705325942)(C:\Users\86182\AppData\Roaming\Typora\typora-user-images\image-20211007163448686.png)]

image-20211007163604233

image-20211007163641266

附绘图代码

data = pd.read_excel('../static/test1.xlsx')
plt.scatter(data['累计里程']-131598.3,data['SOC'])
plt.xlabel('行驶里程')
plt.ylabel('SOC')
plt.show()
plt.scatter(data['累计里程']-131598.3,data['电池单体电压最高值'])
plt.xlabel('行驶里程')
plt.ylabel('电池单体电压最高值')
plt.show()
plt.scatter(data['累计里程']-131598.3,data['电池单体电压最低值'])
plt.xlabel('行驶里程')
plt.ylabel('电池单体电压最低值')

我们现在引入test2

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-WSrorHKj-1633705325946)(C:\Users\86182\AppData\Roaming\Typora\typora-user-images\image-20210929201945559.png)]

Knn预测准确率: 0.9187220283312564

我们发现SOC在70-100这段拟合的很好,但是SOC低于70时,预测值却比真实值底一些,我们来看下数据

测试集:2021/3/5 9:14:27

训练集:2020/7/7 15:01:30

这段时间我能想到的差异就是温度了,7/7是夏天,但是我们日常经验,天冷时电池存不了电,天热时充一段电就能跑好远,这很不合理

那么还有一种可能就是7/7日天太热,开了空调,所以才会导致这种结果

考虑温度影响,我继续换了一段放电过程,本来想找2021年7月的,但是没找到,于是换成了5月份的

test3:2021/5/20 19:16:11

vin时间车速车辆状态充电状态运行模式总电压总电流累计里程SOC电池单体电压最高值最高电压电池单体代号电池单体电压最低值最低电压电池单体代号最高温度值最高温度探针单体代号最低温度值最低温度探针单体代号最高报警等级DC_DC状态档位最高电压电池子系统号最低电压电池子系统号最高温度子系统号最低温度子系统号驱动电机个数驱动电机序号驱动电机状态驱动电机转速驱动电机转矩驱动电机温度驱动电机控制器温度电机控制器输入电压电机控制器直流母流电流经度维度加速踏板行程值制动踏板状态

image-20210929203306073

Knn预测准确率: 0.8213905807852736

预测率反而低了,但是5月份可能也没开空调,于是我找了第四段放电数据,和训练集的数据接近

test4:2020/7/8 13:24:33 ,和训练集只差了一天,而且数据十分完整,正常情况,这天应该也会开空调的,但电池会不会随着年限产生变化呢

image-20210929204102298

这段结果非常完美

Knn预测准确率: 0.9907640546172836

但是我们也知道,电池会随着使用年限而产生变化,那么,是开了空调还是电池使用时间影响了SOC对车辆续驶里程的预测呢

我们考虑把5月份的数据当做训练集,因为这段时间既有2020年的数据,又有2021年的数据

test5:

训练集:2020/5/24 13:38:08

测试集:2021/5/17 9:37:53

image-20210929205335986

Knn预测准确率: 0.9842099689376295

这就证明了1年时间,电池结构的老化在SOC:50-100这段时间没有受到影响

更换数据集

image-20211008211015959

效果依然很好

总结与展望

目前我对于缺失部分数据的行的处理是直接删掉,下一步我可以使用Largrange插值法进行一些处理

同时我也可以删去一些明显不合理的数据

此外,我可以探讨了其他变量和行驶里程的关系

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值