多元一次方程组有没有解取决于什么

先给一个定义:
在这里插入图片描述
若有解,则称为“连续的”,否则“不连续”

在看复杂情况之前回顾一下之前的子问题
在这里插入图片描述
之前我们解决这种问题的时候,一般采用消元法,或者看成两条直线,观察其交点情况。


下面正式开始

在这里插入图片描述
线性组合的概念
在这里插入图片描述
上图是列的角度去看方程组,也就是线性组合
在这里插入图片描述
因此,以后我们可以加一种想法了:

多元一次方程组有没有解就是问向量b是不是那些列向量的线性组合

在这里插入图片描述
换一种思路之后在看之前那些例子,可知上述式子无解

在这里插入图片描述
在这里插入图片描述

我们可以类比到三维空间,是不是三个非平行的向量可以扫过整个空间呢?
答案是不可以,考虑在xoy平面内的三个不平行的向量,显然不行
所以,二维的这个“平行”对应到其他维度可能是其他的词

经过了上述几个例子,我们很自然的会去想,那些列的线性组合所能表示的所有向量的集合是什么,为此有下面的定义:
在这里插入图片描述
可以说“S是V的生成集”,也可以说“S生成了V”
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
今天的总结:
在这里插入图片描述
其实今天所说的就是一直“换个说法”,看一个多元一次方程组有没有解就是看b是否为列的线性组合,也就是看b向量是否在列的span里面。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值