先给一个定义:
若有解,则称为“连续的”,否则“不连续”
在看复杂情况之前回顾一下之前的子问题
之前我们解决这种问题的时候,一般采用消元法,或者看成两条直线,观察其交点情况。
下面正式开始
线性组合的概念
上图是列的角度去看方程组,也就是线性组合
因此,以后我们可以加一种想法了:
多元一次方程组有没有解就是问向量b是不是那些列向量的线性组合
换一种思路之后在看之前那些例子,可知上述式子无解
我们可以类比到三维空间,是不是三个非平行的向量可以扫过整个空间呢?
答案是不可以,考虑在xoy平面内的三个不平行的向量,显然不行
所以,二维的这个“平行”对应到其他维度可能是其他的词
经过了上述几个例子,我们很自然的会去想,那些列的线性组合所能表示的所有向量的集合是什么,为此有下面的定义:
可以说“S是V的生成集”,也可以说“S生成了V”
今天的总结:
其实今天所说的就是一直“换个说法”,看一个多元一次方程组有没有解就是看b是否为列的线性组合,也就是看b向量是否在列的span里面。