Brief Gain-SwinIR: Image Restoration Using Swin Transformer
乘累加操作的总数是动态的,它直接关联到模型的计算复杂度,即在给定输入上评估模型需要多少计算资源。尺度不同:参数总数是模型结构固有的特征,而乘累加操作的总数则取决于模型的输入大小。例如,对于卷积神经网络,卷积层的参数总数是固定的,但乘累加操作的总数会随着输入图像的大小变化而变化。参数数量多的模型可能能够捕捉数据中更复杂的模式,但也可能更容易过拟合(特别是在数据量不足的情况下)。参数总数是静态的,它反映了模型的容量,即模型可以学习的信息量。多的乘累加操作可能意味着更长的推理时间和更高的能耗。
原创
2024-02-19 02:29:13 ·
181 阅读 ·
1 评论