后续陆续更新:传递函数讲解、工作点线性化、系统辨识、LMS
一、动态方程
一般控制系统的动态方程由系统输出变量及其导数与输入变量及其导数的关系式描述。
1.微分方程
微分方程,是指含有未知函数及其导数的关系式。一般控制系统可以用系统输出变量及其高阶导数与输入变量及其高阶导数描述。
故所建立的微分方程可以理解为输出量(因变量)关于输入量(自变量)以及时间的偏微分方程。
求解该微分方程可以理解为找出满足控制系统内部关系的输出量关于时间以及输入量的二元函数。
其动态方程可以用如下高阶微分方程描述,
a n y n + a n − 1 y n − 1 + . . . + a 0 = b m u m + b m − 1 u m − 1 + . . . + b 0 a_ny^n+a_{n-1}y^{n-1}+...+a_0=b_mu^m+b_{m-1}u^{m-1}+...+b_0 anyn+an−1yn−1+...+a0=bmum+bm−1um−1+...+b0
2.差分方程
差分方程是指包含未知函数的差分及自变数的方程。在求微分方程的数值解时,常把其中的微分用相应的差分来近似(便于计算机求解),所导出的方程就是差分方程。
差分方程的一般形式为
a n y ( k + n ) + . . . + a 1 y ( k ) + a 0 = b m u ( k + m ) + . . . + b 1 u ( k ) + b 0 a_ny(k+n)+...+a_1y(k)+a_0=b_mu(k+m)+...+b_1u(k)+b_0 any(k+n)+...+a1y(k)+a0=bmu(k+m)+...+b1u(k)+b0
无论是微分方程还是差分方程,其解析求解一般的比较困难的,且尚没有一般性的方法总结,故常常需要使用数值求解亦即计算机仿真。而为了方便计算机仿真,需对高阶的微(差)分方程进行化简,这里引入了状态空间以及传递函数用以描述。
二、状态空间
状态空间的引入可以使得原本的高阶微分(差分)方程转化为一组微分方程组的形式。进而可以更好的描述控制系统内部动态。且一般状态空间变量的个数等于高阶微分方程组的阶数(积分元器件个数)。
1.连续状态空间
一般高阶微分方程方程可以通过引入状态量转化为多个一阶微分方程组的形式。故常用一阶微分方程组来描述系统内部动态方程。
以 m m m 个输入, n n n 个输出控制系统为例(m≥n)(故有m个状态变量)
其动态方程可以用如下两个一阶微分方程组描述,其中,
状态方程为:
x 1 ′ = f ( x 1 , . . . , x m , u 1 , . . . , u m , t ) x 2 ′ = f ( x 1 , . . . , x m , u 1 , . . . , u m , t ) . . . x m ′ = f ( x 1 , . . . , x m , u 1 . . . , u m , t ) x 1 ( t 0 ) = x 0 . . . x m ( t 0 ) = x n 0 x_1'=f(x_1,...,x_m,u_1,...,u_m,t)\\ x_2'=f(x_1,...,x_m,u_1,...,u_m,t)\\...\\ x_m'=f(x_1,...,x_m,u_1...,u_m,t)\\x_1(t_0)=x_0...x_m(t_0)=x_{n0} x1′=f(x1,...,xm,u1,...,um,t)x2′=f(x1,...,xm,u1,...,um,t)...xm′=f(x1,...,xm,u1...,um,t)x1(t0)=x0...xm(t0)=xn0
输出方程为:
y 1 = f ( x 1 , . . . , x m , u 1 , . . . , u m , t ) y 2 = f ( x 1 , . . . , x m , u 1 , . . . , u m , t ) . . . y n = f ( x 1 , . . . , x m , u 1 . . . , u m , t ) y_1=f(x_1,...,x_m,u_1,...,u_m,t)\\ y_2=f(x_1,...,x_m,u_1,...,u_m,t)\\...\\ y_n=f(x_1,...,x_m,u_1...,u_m,t) y1=f(x1,...,xm,u1,...,um,t)y2