A Survey on Diffusion Models for Time Series and Spatio-Temporal Data(时空序列数据扩散模型综述)


时间序列数据的研究对于理解一段时间内的趋势和异常至关重要,从而能够在各个领域提供预测性见解。另一方面,时空数据对于分析空间和时间上的现象至关重要,为复杂系统交互提供动态视角。近年来,扩散模型在时空序列数据挖掘中得到了广泛的应用。它们不仅增强了顺序和时间数据的生成和推理能力,而且还扩展到其他下游任务。在本次调查中,我们全面、深入地回顾了扩散模型在时间序列和时空数据中的使用,并按模型类别、任务类型、数据模态和实际应用领域对它们进行分类。具体来说,我们将扩散模型分为 无条件有条件类型,并分别讨论时间序列数据和时空数据。无监督运行的无条件模型被细分为基于概率和基于评分的模型,服务于预测和生成任务,例如预测、异常检测、分类和插补。另一方面,条件模型利用额外信息来提高性能,并且类似地分为预测任务和生成任务。我们的调查广泛涵盖了它们在各个领域的应用,包括医疗保健、推荐、气候、能源、音频和交通,提供了对这些模型如何分析和生成数据的基础了解。通过这种结构化概述,我们旨在为研究人员和从业者提供对时间序列和时空数据分析的扩散模型的全面理解,旨在通过解决传统挑战并在扩散模型框架内探索创新解决方案来指导未来的创新和应用。

1. Introduction

DIffusion 模型代表一系列概率生成模型,这些模型通过两步过程进行优化,包括在一组训练样本中注入噪声并随后去除噪声。该过程包括前向阶段(称为扩散)和反向阶段(称为去噪)。通过训练模型去除扩散过程中添加的噪声,模型学习在推理过程中生成与训练数据的分布紧密一致的有效数据样本[2]、[189]。近年来,扩散模型日益受到重视,并对各个领域产生了重大影响,包括计算机视觉 (CV) [2]、[8]、[190]、[191]、[192]、自然语言处理 (NLP) [172]、[193]、[194]、[195] 和一般多模态学习[112]、[196]、[197]、[198]。这挑战了生成对抗网络(GAN)的长期霸主地位[115],[187]。在这些领域中,扩散模型在文本到图像[112]、[199]、实例分割[200]、[201]、3D形状生成[202]、[203]、分子设计等应用中表现出了卓越的能力[204]、[205]和音频生成[91]、[206]。值得注意的是,扩散模型作为传统上由自回归方法主导的任务的非自回归替代方案也受到了欢迎[189]。
在这里插入图片描述
最近,OpenAI Sora [87] 的推出标志着扩散模型建模物理世界中嵌入时空连续体的出现。时态数据主要包括时间序列和时空数据,封装了绝大多数现实世界系统的动态[76]。这些形式的时态数据已被广泛研究,并被认为对于许多应用至关重要[77]、[207]、[208]。然而,从各种数据模式中推导出物理世界中的普遍动态定律仍然是该领域的重大挑战。最近,时间序列和时空建模领域经历了从感觉智能到通用智能的重大转变[209]。这种转变的特点是统一基础模型(FM)的出现,这些模型具有通用的时态数据分析能力[76],[209],挑战了特定领域模型的霸主地位。扩散模型在许多模式上都取得了最先进的结果,包括图像、语音和视频[210]。受益于这些领域大量多样的可用数据,扩散模型通常与大语言模型(LLM)或其他基础模型一起充当生成式 FM,促进这些领域的快速发展 [7]、[91]、[190]。近年来,用于建模时间序列和时空数据的扩散模型也越来越多(图1)。此外,我们已经意识到越来越多的尝试使用扩散模型进行时间建模(见表 1)。观察扩散模型的成功,一个有趣的问题

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值