A Survey on Diffusion Models for Time Series and Spatio-Temporal Data(时空序列数据扩散模型综述)


时间序列数据的研究对于理解一段时间内的趋势和异常至关重要,从而能够在各个领域提供预测性见解。另一方面,时空数据对于分析空间和时间上的现象至关重要,为复杂系统交互提供动态视角。近年来,扩散模型在时空序列数据挖掘中得到了广泛的应用。它们不仅增强了顺序和时间数据的生成和推理能力,而且还扩展到其他下游任务。在本次调查中,我们全面、深入地回顾了扩散模型在时间序列和时空数据中的使用,并按模型类别、任务类型、数据模态和实际应用领域对它们进行分类。具体来说,我们将扩散模型分为 无条件有条件类型,并分别讨论时间序列数据和时空数据。无监督运行的无条件模型被细分为基于概率和基于评分的模型,服务于预测和生成任务,例如预测、异常检测、分类和插补。另一方面,条件模型利用额外信息来提高性能,并且类似地分为预测任务和生成任务。我们的调查广泛涵盖了它们在各个领域的应用,包括医疗保健、推荐、气候、能源、音频和交通,提供了对这些模型如何分析和生成数据的基础了解。通过这种结构化概述,我们旨在为研究人员和从业者提供对时间序列和时空数据分析的扩散模型的全面理解,旨在通过解决传统挑战并在扩散模型框架内探索创新解决方案来指导未来的创新和应用。

1. Introduction

DIffusion 模型代表一系列概率生成模型,这些模型通过两步过程进行优化,包括在一组训练样本中注入噪声并随后去除噪声。该过程包括前向阶段(称为扩散)和反向阶段(称为去噪)。通过训练模型去除扩散过程中添加的噪声,模型学习在推理过程中生成与训练数据的分布紧密一致的有效数据样本[2]、[189]。近年来,扩散模型日益受到重视,并对各个领域产生了重大影响,包括计算机视觉 (CV) [2]、[8]、[190]、[191]、[192]、自然语言处理 (NLP) [172]、[193]、[194]、[195] 和一般多模态学习[112]、[196]、[197]、[198]。这挑战了生成对抗网络(GAN)的长期霸主地位[115],[187]。在这些领域中,扩散模型在文本到图像[112]、[199]、实例分割[200]、[201]、3D形状生成[202]、[203]、分子设计等应用中表现出了卓越的能力[204]、[205]和音频生成[91]、[206]。值得注意的是,扩散模型作为传统上由自回归方法主导的任务的非自回归替代方案也受到了欢迎[189]。
在这里插入图片描述
最近,OpenAI Sora [87] 的推出标志着扩散模型建模物理世界中嵌入时空连续体的出现。时态数据主要包括时间序列和时空数据,封装了绝大多数现实世界系统的动态[76]。这些形式的时态数据已被广泛研究,并被认为对于许多应用至关重要[77]、[207]、[208]。然而,从各种数据模式中推导出物理世界中的普遍动态定律仍然是该领域的重大挑战。最近,时间序列和时空建模领域经历了从感觉智能到通用智能的重大转变[209]。这种转变的特点是统一基础模型(FM)的出现,这些模型具有通用的时态数据分析能力[76],[209],挑战了特定领域模型的霸主地位。扩散模型在许多模式上都取得了最先进的结果,包括图像、语音和视频[210]。受益于这些领域大量多样的可用数据,扩散模型通常与大语言模型(LLM)或其他基础模型一起充当生成式 FM,促进这些领域的快速发展 [7]、[91]、[190]。近年来,用于建模时间序列和时空数据的扩散模型也越来越多(图1)。此外,我们已经意识到越来越多的尝试使用扩散模型进行时间建模(见表 1)。观察扩散模型的成功,一个有趣的问题出现了:时间序列/时空数据分析与扩散模型的交叉会擦出什么样的火花?时间序列和时空数据分析从根本上依赖于对其固有时间动态的深刻理解,其中主要任务主要集中在骨干模型的生成能力上,例如预测[13]、[86]、[253]、插补[ 56]、[69]、[262]和一代[182]、[198]。这些分析的重点是以有条件或无条件的方式生成用于特定目的的时态数据样本。见证了时间序列和时空基础模型 [76]、[254] 的最新发展,无论是基于LLMs还是从头开始训练,它们的成功都可以归因于估计训练样本分布的能力,其中有效的数据表示可以画出来。在这方面,扩散模型作为一个强大的生成框架出现,它能够(1)对时间数据内的复杂模式进行建模,以及(2)支持广泛的下游任务,如图2所示。为了为特定任务生成有效的数据样本,时间序列和时空扩散模型通常以无条件的方式运行,而不需要监督信号。鉴于现实世界应用的部分观察性质[255],条件扩散模型已经出现。他们利用**数据标签(例如指令、元数据或外生变量)**来调节生成过程,从而实现有效的跨模式提示,从而产生更有针对性和改进的结果[182]。我们在图 3 中提出了路线图。通过对大规模时态数据进行训练,扩散模型有效地填补了时间序列/时空数据生成的空白,并在解决下一代 LLM 授权的时态数据中心代理的难题方面展现出巨大的潜力 [209],[ 256]。尽管扩散模型在处理时间序列和时空数据方面前景广阔且进展迅速,但现有文献中明显缺乏对该模型族的系统分析。本文旨在通过提供前瞻性的内容来弥合这一差距,
在这里插入图片描述

,详细说明扩散模型适合这些数据模式的原因,并揭示它们赋予优势的机制。在这项调查中,我们提供了详细的分类,进行了彻底的审查,并确定了这个快速发展的环境中的新兴趋势。我们的主要贡献总结如下:
• 全面且最新的调查。我们对时间序列和时空数据的扩散模型进行了全面、最新和前瞻性的回顾。我们的调查强调了扩散模型对这些数据模式的适用性,并讨论了它们带来的好处
• 统一、结构化的分类。我们引入了一个清晰且有组织的框架,将现有文献分为两种主要类型:无条件和条件扩散模型,重点关注跨越预测生成任务的时间序列和时空数据。这种分类从多个角度为读者提供了该主题的连贯路线图。
• 对新兴进步的洞察。我们讨论无条件和条件扩散模型中的尖端技术,重点关注时间序列和时空数据。我们的报道包括最新技术和新兴趋势,例如多模式条件生成。
• 挑战和未来方向总结。我们确定了当前研究领域面临的主要挑战,并强调了未来探索的几个有希望的方向。本文的其余部分结构如下:sec.2 提供了扩散模型的全面背景,详细介绍了它们的发展、理论基础和各种实现。sec. 3 展示了应用于时间序列和时空数据的扩散模型的结构化概述和分类,sec. 4讨论了标准和高级扩散模型。sec. 5 侧重于任务视角,研究扩散模型如何处理预测、生成、插补、异常检测等。sec. 6 讨论了数据视角,强调了特定于时间序列和时空数据的挑战和解决方案。sec.7 探讨了扩散模型在医疗保健、交通和能源等各个领域的应用,展示了其广泛的实用性。最后,sec. 8 最后对未来机遇进行了展望并进行了总结。

2. Background

本文主要回顾了使用扩散模型解决时间序列和时空数据挑战的最新进展。在本节中,我们将首先定义时间序列和时空数据,以及它们在各个领域的相应任务。然后,我们将介绍扩散模型的历史及其优点。最后,将介绍一些不同类型的扩散模型及其基于理论公式推导和与其他生成模型比较的变体。

2.1 时间序列和时空数据概述

时间数据,特别是是时空序列数据,是广泛的现实应用的重要数据结构[76]。时间序列被定义为数据点的顺序排列,按时间顺序分类。这些序列可以是单变量(涉及随时间变化的单个变量),也可以是多变量(包含多个变量)。例如,城市的每日空气质量测量构成一个单变量时间序列,而结合每日温度和湿度读数生成一个多变量序列。
在这里插入图片描述
在实际应用中,时空数据是指观测值的集合,其中每个数据点由其在空间和时间中的位置定义,封装了各种数据结构,例如图形、轨迹甚至视频,如[76]中所述。例如,代表城市交通流量[286]、[287]随时间变化的时空图(图4(c))可以理解为时空数据,其中每个节点代表具有特定属性的特定位置,边是按流量加权,流量随时间变化。同样,轨迹数据[281]、[288](图4(d))捕获物体随时间在空间中的运动,包括它们的路径、速度和方向的变化。此类数据对于交通研究、野生动物跟踪和移动网络优化中的应用至关重要,其中根据历史数据分析运动模式并预测未来位置至关重要。在此基础上,可以系统地表征和分析这些和其他时空结构。
基于所提供的定义,我们现在继续简洁地介绍与每个数据类别相关的代表性任务[76]。
• 时间序列分析。使用扩散模型对时间序列进行分析包含四个主要任务:预测、生成、异常检测和插补。预测侧重于预测时间序列内的未来值,根据预测的时间范围可以分为短期预测长期预测。生成涉及根据给定数据集的统计属性创建新的时间序列数据,作为模拟可能场景或增强训练模型的数据多样性的一种方式。异常检测是一种特殊的分类形式,旨在区分非典型序列和正常序列。插补解决了填充序列中缺失值的挑战,这对于维护时间序列数据的完整性和实用性至关重要。
• 时空数据分析。时空数据分析虽然包含与时间序列分析类似的任务,但通常将这些方法应用于特定的应用场景。例如,预测可能侧重于交通流量 [43] 或空气质量 [78],利用历史数据模式来预测未来状况。生成任务可能涉及创建合成轨迹,通过用生成的匿名数据替换敏感信息,为原始数据集提供符合隐私的替代方案[81]、[290]。异常检测在车辆轨迹分析等场景中变得尤为重要,其中与生成的规范模式的偏差可能表明异常或可疑行为[83]。此外,时空插补在解决多元时间序列中的缺失值方面发挥着至关重要的作用[69],确保数据集全面、准确以供进一步分析。

2.2 扩散模型及其历史

扩散模型擅长通过逐渐消除噪声来生成具有详细连贯性的高质量、复杂序列。它们提供了对世代的强大控制,允许根据条件进行微调[114]。这些模型灵活且适应各种数据类型和模式,通过逐步降噪机制对错误具有鲁棒性,并且能够探索数据多样性以实现创意输出。此外,它们可以与其他模型类型(例如自动编码器)集成,以提高生成质量和控制。训练过程包括两个步骤:正向过程(扩散)和反向过程(去噪)。扩散模型从噪声分布开始,通过一系列步骤逐渐改变。在前向过程中,模型通过多个步骤逐步向原始数据添加噪声,直到数据变成纯随机噪声。这个过程通常是马尔可夫的,这意味着每一步仅取决于前一步。然后发生相反的过程,包括学习去除数据中的噪声,本质上是反转前向过程。通过训练模型去除扩散过程中添加的噪声,模型学习从与训练数据相同的分布生成样本。整个训练过程涉及优化模型以有效去噪。这通常是使用损失函数来完成的,该函数鼓励模型生成接近真实数据分布的样本 [3]。目前常见的扩散模型框架包括去噪扩散概率模型(DDPM)[1]、[2]、基于分数的随机微分方程(Score SDE)[4]、[6]、条件扩散模型[7]、[8] ]、[9]等。下面我们将通过理论公式推导来介绍扩散模型的子类。
在这里插入图片描述

3. 3 概述和分类

本节介绍用于解决时间序列和时空数据分析挑战的扩散模型的概述和分类。我们的调查围绕四个主要维度组织讨论:扩散模型的类别任务类型数据模式实际应用。值得注意的相关工作的综合总结如图 7 所示。我们将现有文献分为两大类:无条件扩散模型和条件扩散模型,重点关注时间序列和时空数据。在无条件类别中,扩散模型以无监督方式运行,无需监督信号即可生成数据样本。此设置代表了分析时间序列和时空数据的基本方法。在这一类别中,文献可以进一步分为基于概率的扩散模型和基于分数的扩散模型。如第 2 节中所述,此类研究大致分为两个任务组:预测任务生成任务。预测任务通常涉及预测和异常检测,利用历史数据和模式来预测当前和/或未来事件。相反,生成任务侧重于识别广泛数据集中的模式以生成新内容,例如时间序列插补和增强。针对主要数据模式(时间序列和时空数据)开发了方法,以满足各个领域的广泛应用,包括医疗保健、能源、气候、交通等。在条件类别中,扩散模型是为时间序列和时空数据的条件分析而定制的。实证研究表明,与无条件模型相比,利用数据标签的条件生成模型更容易训练并产生卓越的性能[75]。在这种情况下,标签(又称条件)通常来自各种来源,例如提取的短期趋势[34]和城市流量图[35],以增强模型推断。该类别包含用于预测和生成任务的基于概率和基于分数的扩散模型,为利用扩散模型解决特定约束下时间序列和时空数据分析的实际挑战提供了更新鲜的视角。基于对模型类别、任务类型、数据模式和应用领域的基本理解,我们在以下各节中更深入地探索时间序列和时空数据分析的扩散模型。每个部分都旨在揭示扩散模型应用中固有的复杂性和细微差别,从多个角度提供全面的概述。
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

4. 展望和未来机遇

在本节中,论文指出了时间序列和时空数据扩散模型的一些未来研究方向,值得进一步研究。

4.1 可扩展性和效率

扩散模型的计算复杂性对其在资源受限或实时环境中的应用提出了挑战。因此,提高其可扩展性和效率对于其在现实场景中的部署至关重要。未来的方向可以探索更轻、更快版本的扩散模型,在保持性能的同时显着降低计算需求。此外,进一步的努力包括模型压缩并行计算以及针对时间序列和时空数据中采用的扩散模型优化的高效采样策略。

4.2 鲁棒性和泛化性

现实世界的时间序列和时空数据中经常存在噪声、缺失数据、异常和分布变化等数据挑战。研究和增强扩散模型应对这些数据挑战的稳健性至关重要。因此,增强模型跨不同数据集和场景的泛化能力也是扩展各个领域的适用性和可靠性的一个有趣的方向。此外,研究还可以集中于开发能够适应新数据特征或动态变化环境而无需人工干预的框架。

4.3 先验知识引导生成

时间序列和时空数据的生成过程应遵循独特的约束;例如,生成的轨迹应在道路网络上传播,人口迁移数据应符合社会进化模式,火灾的蔓延应遵循热力学原理。大多数现有的扩散模型虽然能够根据一些有用的条件生成相应的时间序列或时空数据,但在实践中仍然缺乏对此类先验知识的充分考虑。

4.4 多模态数据融合

在复杂的现实场景中,时间序列和时空数据通常伴随着其他数据类型,例如文本和视觉信息。探索扩散模型中多模式数据源的融合可以显着提高性能。这在金融和医疗保健等领域特别有用,在这些领域集成不同的数据源可以带来更全面、更准确的分析。未来的研究可以开发新颖的架构,更有效地合并这些不同的数据流,增强对多模式时间序列和时空数据的预测性能和上下文理解。

4.5 LLMs和扩散模型的集成

LLMs和扩散模型的集成用于时间序列和时空数据分析,为增进对复杂系统的理解和改进决策提供了巨大的潜力。具体来说,利用LLMs的自然语言理解能力可以增强时间推理并提供复杂系统的更全面的视图。未来的研究可能包括开发利用扩散模型的生成能力以及LLMs丰富的语义和句法处理的组合模型,有可能为自动推理和决策系统开辟新的途径。

5. Conclusion

结论在本次调查中,论文全面概述了时间序列和时空数据分析背景下扩散模型的进展和应用。我们将扩散模型分为无条件扩散模型和条件扩散模型,每种模型都具有独特的优势和挑战。此外,我们还研究了与这些模型相关的各种任务,包括预测、生成、插补和异常检测。此外,我们探索了不同的应用场景,并对该研究领域的未来机会和方向提供了见解。我们希望这项调查能够促进时间序列和时空数据分析的扩散模型领域的研究进步。

  • 26
    点赞
  • 16
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值