目录
先前自主代理的研究通常侧重于在孤立的环境中训练知识有限的智能体,这与人类的学习过程存在很大差异,从而使智能体难以实现类似人类的决策。最近,通过获取大量网络知识,大型语言模型(LLM)在实现人类水平的智能方面表现出了巨大的潜力。这引发了对基于LLM的自主代理的研究热潮。论文对这些研究进行了全面的调查,从整体角度对基于LLM的自主代理领域进行了系统回顾。更具体地说,论文首先讨论基于 LLM 的自主代理的构建,为此论文提出了一个包含大部分先前工作的统一框架。然后,论文全面概述了基于LLM的自主代理在社会科学、自然科学和工程领域的各种应用。最后,论文深入研究了基于 LLM 的自主代理常用的评估策略。基于之前的研究,论文还提出了该领域的一些挑战和未来方向。为了跟踪这一领域并不断更新本文的调查,论文在 https://github.com/Paitesanshi/LLM-Agent-Survey 维护了相关参考文献的存储库
Introduction
近年来,大型语言模型(LLM)取得了显着的成功,展示了获得类人智能的巨大潜力。这种能力源自于利用全面的训练数据集以及大量的模型参数。基于这种能力,越来越多的研究领域采用LLM作为中央控制器来构建自主代理以获得类人决策能力。沿着这个方向,研究人员开发了许多有前途的模型,其中的关键思想是为LLM配备记忆和规划等关键的人类能力,使他们像人类一样行事并有效地完成各种任务。此前,这些模型都是独立提出的,对它们进行整体总结和比较的努力有限。然而,论文相信对这个快速发展的领域进行系统总结对于全面理解它并有益于启发未来的研究具有重要意义。本文对基于LLM的自主代理领域进行了全面的调查。具体来说,论文从基于LLM的自治代理的构建、应用和评估三个方面来组织调查。对于智能体的构建,论文关注两个问题,即(1)如何设计智能体架构以更好地利用LLM,以及(2)如何激发和增强智能体完成不同任务的能力。直观上,第一个问题旨在为代理构建硬件基础,而第二个问题则侧重于为代理提供软件资源。对于第一个问题,论文提出了一个统一的代理框架,它可以涵盖之前的大部分研究。对于第二个问题,论文总结了智能体能力获取的常用策略。除了讨论智能体构建之外,论文还概述了基于LLM的自主智能体在社会科学、自然科学和工程中的应用。最后,论文深入研究了评估基于LLM的自主代理的策略,重点关注主观和客观策略。总之,本次调查对基于LLM的自主代理领域的现有研究进行了系统回顾并建立了全面的分类法。论文重点关注三个方面:Agent构建、应用、评估。根据之前的研究,论文确定了该领域的各种挑战并讨论了潜在的未来方向。
2 基于LLM的自主代理构建
基于LLM的自主代理有望通过利用LLM的类人功能来有效地执行各种任务。为了实现这一目标,有两个重要方面,即(1)应该设计哪种架构以更好地使用LLM;(2)给出设计的架构,如何使Agent获得完成特定任务的能力。在架构设计的背景下,论文对现有研究进行系统综合,最终形成一个全面的统一框架。第二个方面,论文根据是否对LLM进行微调,总结了代理人能力获取的策略。将基于LLM的自主代理与传统机器学习进行比较时,设计代理架构类似于确定网络结构,而代理能力获取类似于学习网络参数。下面论文就这两方面进行更详细的介绍。
2.1 代理架构设计
LLM的最新进展已经证明了它们以问答(QA)形式完成广泛任务的巨大潜力。然而,构建自主代理难以得到质量保证,因为它们需要履行特定的角色并自主感知和学习环境,以像人类一样进化自己。为了弥合传统LLM和自主代理之间的差距,一个关键方面是设计合理的代理架构,以帮助LLM最大