1.概述
1.1.HDFS集群两大角色:
NameNode、
DataNode
1.2.NameNode职责
NameNode负责管理整个文件系统的元数据
1.3.DataNode 职责
DataNode负责管理用户的文件数据块
1.4.文件存储
文件会按照固定的大小(blocksize)切成若干块后分布式存储在若干台datanode上
1.5.副本
每一个文件块可以有多个副本,并存放在不同的datanode上
1.6.block信息
Datanode会定期向Namenode汇报自身所保存的文件block信息,而namenode则会负责保持文件的副本数量
1.7.机制透明
HDFS的内部工作机制对客户端保持透明,客户端请求访问HDFS都是通过向namenode申请来进行
2.HDFS写数据流程(上传到HDFS)
2.1 概述
客户端要向HDFS写数据,首先要跟namenode通信以确认可以写文件并获得接收文件block的datanode,然后,客户端按顺序将文件逐个block传递给相应datanode,并由接收到block的datanode负责向其他datanode复制block的副本
2.2 详细步骤图
也可以看这幅图:
2.3 详细步骤解析
2.3.1、根据namenode通信请求上传文件,namenode检查目标文件是否已存在,父目录是否存在
2.3.2、namenode返回是否可以上传
2.3.3、client请求第一个 block该传输到哪些datanode服务器上
2.3.4、namenode返回3个datanode服务器ABC
2.3.5、client请求3台dn中的一台A上传数据(本质上是一个RPC调用,建立pipeline),A收到请求会继续调用B,然后B调用C,将真个pipeline建立完成,逐级返回客户端
2.3.6、client开始往A上传第一个block(先从磁盘读取数据放到一个本地内存缓存),以packet为单位,A收到一个packet就会传给B,B传给C;A每传一个packet会放入一个应答队列等待应答
2.3.7、当一个block传输完成之后,client再次请求namenode上传第二个block的服务器。
3.HDFS读数据流程(从HDFS下载)
3.1 概述
客户端将要读取的文件路径发送给namenode,namenode获取文件的元信息(主要是block的存放位置信息)返回给客户端,客户端根据返回的信息找到相应datanode逐个获取文件的block并在客户端本地进行数据追加合并从而获得整个文件
3.2 详细步骤图
也看可以看这张图:
3.3 详细步骤解析
3.3.1、跟namenode通信查询元数据,找到文件块所在的datanode服务器
3.3.2、挑选一台datanode(就近原则,然后随机)服务器,请求建立socket流
3.3.3、datanode开始发送数据(从磁盘里面读取数据放入流,以packet为单位来做校验)
3.3.4、客户端以packet为单位接收,现在本地缓存,然后写入目标文件
4.NameNode工作机制
学习目标:理解namenode的工作机制尤其是元数据管理机制,以增强对HDFS工作原理的理解,及培养hadoop集群运营中“性能调优”、“namenode”故障问题的分析解决能力
问题场景:
1、集群启动后,可以查看文件,但是上传文件时报错,打开web页面可看到namenode正处于safemode状态,怎么处理?
当hadoop集群从新启动的时候,会进入安全模式,在这个转态下,拒绝一切外来的增删改
hadoop dfsadmin –safemode leave
2、Namenode服务器的磁盘故障导致namenode宕机,如何挽救集群及数据?ha高可用,解决单点故障
3、Namenode是否可以有多个?namenode内存要配置多大?namenode跟集群数据存储能力有关系吗?
4、文件的blocksize究竟调大好还是调小好?
……
诸如此类问题的回答,都需要基于对namenode自身的工作原理的深刻理解
4.1. NameNode职责
4.1.1、负责客户端请求的响应
4.1.2、元数据的管理(查询,修改)
4.1.3、SecondaryNameNode的流程
4.2. 元数据管理
NameNode对数据的管理采用了三种存储形式:
内存元数据(NameSystem)
磁盘元数据镜像文件(fsimage镜像文件)
数据操作日志文件(可通过edits日志运算出元数据)
4.2.1 、元数据存储机制
A、内存中有一份完整的元数据(内存meta data)
B、磁盘有一个“准完整”的元数据镜像(fsimage)文件(在namenode的工作目录中)
C、用于衔接内存metadata和持久化元数据镜像fsimage之间的操作日志(edits文件)注:当客户端对hdfs中的文件进行新增或者修改操作,操作记录首先被记入edits日志文件中,当客户端操作成功后,相应的元数据会更新到内存meta.data中
4.2.2、 元数据手动查看
可以通过hdfs的查看edits中的信息
cd /usr/local/hadoop-2.7.3/data/name/current
4.2.3、 元数据的checkpoint
每隔一段时间,会由secondary namenode将namenode上积累的所有edits和一个最新的fsimage下载到本地,并加载到内存进行merge(这个过程称为checkpoint)
checkpoint的详细过程
checkpoint操作的触发条件配置参数
dfs.namenode.checkpoint.check.period=60 #检查触发条件是否满足的频率,60秒
dfs.namenode.checkpoint.dir=file://${hadoop.tmp.dir}/dfs/namesecondary
#以上两个参数做checkpoint操作时,secondary namenode的本地工作目录
dfs.namenode.checkpoint.edits.dir=${dfs.namenode.checkpoint.dir}
dfs.namenode.checkpoint.max-retries=3 #最大重试次数
dfs.namenode.checkpoint.period=3600 #两次checkpoint之间的时间间隔3600秒
dfs.namenode.checkpoint.txns=1000000 #两次checkpoint之间最大的操作记录
checkpoint的附带作用
namenode和secondary namenode的工作目录存储结构完全相同,所以,当namenode故障退出需要重新恢复时,可以从secondary namenode的工作目录中将fsimage拷贝到namenode的工作目录,以恢复namenode的元数据
4.2.4、 元数据目录说明
在第一次部署好Hadoop集群的时候,我们需要在NameNode(NN)节点上格式化磁盘:
$HADOOP_HOME/bin/hdfs namenode -format
格式化完成之后,将会在$dfs.namenode.name.dir/current目录下如下的文件结构
current/
|-- VERSION
|-- edits_*
|-- fsimage_0000000000008547077
|-- fsimage_0000000000008547077.md5
`-- seen_txid
dfs.namenode.name.dir属性可以配置多个目录,
各个目录存储的文件结构和内容都完全一样,相当于备份,这样做的好处是当其中一个目录损坏了,也不会影响到Hadoop的元数据,特别是当其中一个目录是NFS(网络文件系统Network File System,NFS)之上,即使你这台机器损坏了,元数据也得到保存。
下面对$dfs.namenode.name.dir/current/目录下的文件进行解释:
1、VERSION文件是Java属性文件,内容大致如下:
#Fri Nov 15 19:47:46 CST 20