HDFS的工作机制

本文深入探讨了HDFS的工作机制,包括NameNode和DataNode的角色、文件存储与副本策略、写数据和读数据流程。NameNode负责元数据管理和客户端请求响应,DataNode则管理文件数据块。写数据涉及客户端与NameNode的交互,建立数据传输pipeline,通过DataNode完成数据复制。读数据过程中,客户端通过NameNode获取元数据,从DataNode读取数据。同时,文章还讨论了NameNode的元数据管理和故障处理策略。
摘要由CSDN通过智能技术生成

1.概述

1.1.HDFS集群两大角色:

NameNode、
DataNode

1.2.NameNode职责

NameNode负责管理整个文件系统的元数据

1.3.DataNode 职责

DataNode负责管理用户的文件数据块

1.4.文件存储

文件会按照固定的大小(blocksize)切成若干块后分布式存储在若干台datanode上

1.5.副本

每一个文件块可以有多个副本,并存放在不同的datanode上

1.6.block信息

Datanode会定期向Namenode汇报自身所保存的文件block信息,而namenode则会负责保持文件的副本数量

1.7.机制透明

HDFS的内部工作机制对客户端保持透明,客户端请求访问HDFS都是通过向namenode申请来进行

2.HDFS写数据流程(上传到HDFS)

2.1 概述

客户端要向HDFS写数据,首先要跟namenode通信以确认可以写文件并获得接收文件block的datanode,然后,客户端按顺序将文件逐个block传递给相应datanode,并由接收到block的datanode负责向其他datanode复制block的副本

2.2 详细步骤图

在这里插入图片描述
也可以看这幅图:
请添加图片描述

2.3 详细步骤解析

2.3.1、根据namenode通信请求上传文件,namenode检查目标文件是否已存在,父目录是否存在

2.3.2、namenode返回是否可以上传

2.3.3、client请求第一个 block该传输到哪些datanode服务器上

2.3.4、namenode返回3个datanode服务器ABC

2.3.5、client请求3台dn中的一台A上传数据(本质上是一个RPC调用,建立pipeline),A收到请求会继续调用B,然后B调用C,将真个pipeline建立完成,逐级返回客户端

2.3.6、client开始往A上传第一个block(先从磁盘读取数据放到一个本地内存缓存),以packet为单位,A收到一个packet就会传给B,B传给C;A每传一个packet会放入一个应答队列等待应答

2.3.7、当一个block传输完成之后,client再次请求namenode上传第二个block的服务器。

3.HDFS读数据流程(从HDFS下载)

3.1 概述

客户端将要读取的文件路径发送给namenode,namenode获取文件的元信息(主要是block的存放位置信息)返回给客户端,客户端根据返回的信息找到相应datanode逐个获取文件的block并在客户端本地进行数据追加合并从而获得整个文件

3.2 详细步骤图

在这里插入图片描述
也看可以看这张图:
请添加图片描述

3.3 详细步骤解析

3.3.1、跟namenode通信查询元数据,找到文件块所在的datanode服务器

3.3.2、挑选一台datanode(就近原则,然后随机)服务器,请求建立socket流

3.3.3、datanode开始发送数据(从磁盘里面读取数据放入流,以packet为单位来做校验)

3.3.4、客户端以packet为单位接收,现在本地缓存,然后写入目标文件

4.NameNode工作机制

学习目标:理解namenode的工作机制尤其是元数据管理机制,以增强对HDFS工作原理的理解,及培养hadoop集群运营中“性能调优”、“namenode”故障问题的分析解决能力

问题场景:
1、集群启动后,可以查看文件,但是上传文件时报错,打开web页面可看到namenode正处于safemode状态,怎么处理?
当hadoop集群从新启动的时候,会进入安全模式,在这个转态下,拒绝一切外来的增删改
hadoop dfsadmin –safemode leave
2、Namenode服务器的磁盘故障导致namenode宕机,如何挽救集群及数据?ha高可用,解决单点故障
3、Namenode是否可以有多个?namenode内存要配置多大?namenode跟集群数据存储能力有关系吗?
4、文件的blocksize究竟调大好还是调小好?
……

诸如此类问题的回答,都需要基于对namenode自身的工作原理的深刻理解

4.1. NameNode职责

4.1.1、负责客户端请求的响应

4.1.2、元数据的管理(查询,修改)

4.1.3、SecondaryNameNode的流程

请添加图片描述

4.2. 元数据管理

NameNode对数据的管理采用了三种存储形式:
内存元数据(NameSystem)
磁盘元数据镜像文件(fsimage镜像文件)
数据操作日志文件(可通过edits日志运算出元数据)

4.2.1 、元数据存储机制

A、内存中有一份完整的元数据(内存meta data)
B、磁盘有一个“准完整”的元数据镜像(fsimage)文件(在namenode的工作目录中)
C、用于衔接内存metadata和持久化元数据镜像fsimage之间的操作日志(edits文件)注:当客户端对hdfs中的文件进行新增或者修改操作,操作记录首先被记入edits日志文件中,当客户端操作成功后,相应的元数据会更新到内存meta.data

4.2.2、 元数据手动查看

可以通过hdfs的查看edits中的信息

cd /usr/local/hadoop-2.7.3/data/name/current

4.2.3、 元数据的checkpoint

每隔一段时间,会由secondary namenode将namenode上积累的所有edits和一个最新的fsimage下载到本地,并加载到内存进行merge(这个过程称为checkpoint

checkpoint的详细过程
在这里插入图片描述

checkpoint操作的触发条件配置参数

dfs.namenode.checkpoint.check.period=60 #检查触发条件是否满足的频率,60秒
dfs.namenode.checkpoint.dir=file://${hadoop.tmp.dir}/dfs/namesecondary

#以上两个参数做checkpoint操作时,secondary namenode的本地工作目录

dfs.namenode.checkpoint.edits.dir=${dfs.namenode.checkpoint.dir}

dfs.namenode.checkpoint.max-retries=3 #最大重试次数
dfs.namenode.checkpoint.period=3600 #两次checkpoint之间的时间间隔3600秒
dfs.namenode.checkpoint.txns=1000000 #两次checkpoint之间最大的操作记录

checkpoint的附带作用
namenode和secondary namenode的工作目录存储结构完全相同,所以,当namenode故障退出需要重新恢复时,可以从secondary namenode的工作目录中将fsimage拷贝到namenode的工作目录,以恢复namenode的元数据

4.2.4、 元数据目录说明

在第一次部署好Hadoop集群的时候,我们需要在NameNode(NN)节点上格式化磁盘:

$HADOOP_HOME/bin/hdfs namenode -format

格式化完成之后,将会在$dfs.namenode.name.dir/current目录下如下的文件结构

current/
|-- VERSION
|-- edits_*
|-- fsimage_0000000000008547077
|-- fsimage_0000000000008547077.md5
`-- seen_txid

dfs.namenode.name.dir属性可以配置多个目录,
各个目录存储的文件结构和内容都完全一样,相当于备份,这样做的好处是当其中一个目录损坏了,也不会影响到Hadoop的元数据,特别是当其中一个目录是NFS(网络文件系统Network File System,NFS)之上,即使你这台机器损坏了,元数据也得到保存。

下面对$dfs.namenode.name.dir/current/目录下的文件进行解释:
1、VERSION文件是Java属性文件,内容大致如下:

#Fri Nov 15 19:47:46 CST 20

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值