题目地址:
https://leetcode.com/problems/coin-change-2/
给定一个容积 a a a和每个物品的体积 v [ i ] v[i] v[i],每个物品各自都有无限个。问要塞满容积 m m m一共有多少组合。塞满的意思是,存在非负整数 c i c_i ci使得 a = ∑ i = 0 k c i v [ i ] a=\sum_{i=0}^{k}c_iv[i] a=∑i=0kciv[i],所以当容积为 0 0 0的时候,有 1 1 1种组合,也就是每样物品的数量都是 0 0 0。
基本思想是动态规划。设
f
[
i
]
[
j
]
f[i][j]
f[i][j]表示前
i
i
i个物品塞满
j
j
j的容积有多少种组合。那么这么多种组合可以分为两类:
1、不含物品
i
i
i,总共
f
[
i
−
1
]
[
j
]
f[i-1][j]
f[i−1][j]种组合;
2、含物品
i
i
i,总共
f
[
i
]
[
j
−
v
[
i
]
]
f[i][j-v[i]]
f[i][j−v[i]]种组合。
总组合数就是两者之和。更新顺序是从上到下更新行,每行从左到右更新。代码如下:
class Solution {
public:
int change(int amount, vector<int>& cs) {
int f[amount + 1];
memset(f, 0, sizeof f);
f[0] = 1;
for (int i = 0; i < cs.size(); i++)
for (int j = cs[i]; j <= amount; j++)
f[j] += f[j - cs[i]];
return f[amount];
}
};
时空复杂度 O ( m ) O(m) O(m)。