【数学】偏序集及其分解定理和应用

X X X是个非空集合, X X X上有一个二元关系 R R R满足自反性、反对称性和传递性,我们就称其为偏序关系。三个性质分别指的是:
1、自反性,指 ∀ a , ( a , a ) ∈ R \forall a, (a,a)\in R a,(a,a)R
2、反对称性,指 ( a , b ) ∈ R ∧ ( b , a ) ∈ R ⇒ a = b (a,b)\in R\land (b,a)\in R\Rightarrow a=b (a,b)R(b,a)Ra=b
3、传递性,指 ( a , b ) ∈ R ∧ ( b , c ) ∈ R ⇒ ( a , c ) ∈ R (a,b)\in R\land (b,c)\in R\Rightarrow (a,c)\in R (a,b)R(b,c)R(a,c)R
通常一个偏序关系,我们记为 ( X , ≤ ) (X,\le) (X,)。偏序集有很多例子,例如正整数 Z Z Z连同它上面的整除关系就是个偏序集,一个集合的所有子集组成的集合连同被包含关系也成为一个偏序集。

给定一个偏序集 ( X , ≤ ) (X,\le) (X,),若对任意 x , y x,y x,y,有 x ≤ y ∨ y ≤ x x\le y \lor y\le x xyyx,则称 ≤ \le 是一个全序关系,偏序集 ( X , ≤ ) (X,\le) (X,)也称为一个全序集,也称为一条链。一个偏序集 ( X , ≤ ) (X,\le) (X,)的子偏序集 ( X ′ , ≤ ) (X',\le) (X,)如果是全序集,我们也可以称它是偏序集 ( X , ≤ ) (X,\le) (X,)的一条链,或者严格来讲,全序子集。如果偏序子集 ( X ′ , ≤ ) (X',\le) (X,)中的元素两两不可比较,也就是说,对任意 x , y x,y x,y x ≤ y x\le y xy y ≤ x y\le x yx都不成立,则称其为一条反链。

给定一个偏序集 ( X , ≤ ) (X,\le) (X,),其最长链的长度,称为偏序集 ( X , ≤ ) (X,\le) (X,)的高度;其最长反链的长度,称为偏序集 ( X , ≤ ) (X,\le) (X,)的宽度。

接下来介绍极大元、极小元、最大元、最小元的概念。
偏序集 ( X , ≤ ) (X,\le) (X,),如果有一个元素 x x x使得对于任意 a a a,若 x ≤ a x\le a xa则有 x = a x=a x=a,则称 x x x是这个偏序集的一个极大元。
如果有一个元素 x x x使得对于任意 a a a,若 a ≤ x a\le x ax则有 x = a x=a x=a,则称 x x x是这个偏序集的一个极小元。
如果有一个元素 x x x使得对于任意 a a a,都有 a ≤ x a\le x ax,则称 x x x是这个偏序集的最大元。
如果有一个元素 x x x使得对于任意 a a a,都有 x ≤ a x\le a xa,则称 x x x是这个偏序集的最小元。

我们可以看出,极大元的意思就是,没有比它更大的了;最大元的意思则是,它比别的所有元素都大。这两个概念是不一样的,因为一个偏序集可能有多个极大元,它们之间两两不能比较。但显而易见的是,最大元一定是极大元。反之不然,一个偏序集可能有极大元,但是没有最大元。一个偏序集如果有最大元的话,则最大元一定是唯一的。对于最小元也是一样。

接下来介绍最最重要的两个分解定理。

定理1:一个偏序集 ( X , ≤ ) (X,\le) (X,)的高度为 n n n,则存在划分 X = ⋃ i = 1 n A i X=\bigcup_{i=1}^{n} A_i X=i=1nAi使得每个 A i A_i Ai都是反链。
证明:数学归纳法。当 n = 1 n=1 n=1时,说明任意两个元素都不可比较,则 X X X本身就是个反链,结论成立;设结论对于 n n n也成立。当高度为 n + 1 n+1 n+1时,首先 X X X不可能划分为 n n n个反链,否则的话,由鸽巢原理,长度为 n + 1 n+1 n+1的链必然有两个元素同属于一个反链,这与反链的定义是矛盾的。取 X X X的所有极大元组成一个集合 A 1 A_1 A1,则 A 1 ≠ ∅ A_1\ne \empty A1=(链的最大元就是个极大元)。我们考虑 X − A 1 X-A_1 XA1中的链,如果其有长度为 n + 1 n+1 n+1的链,则其极大元必然也是 X X X的极大元,否则 X X X的高度就应该大于等于 n + 2 n+2 n+2,矛盾。所以 X − A 1 X-A_1 XA1的高度是 n n n,由归纳假设,其可以分解为 n n n个反链,连同 A 1 A_1 A1就是 n + 1 n+1 n+1个反链,结论成立。这个证明有点BFS拓扑排序的味道,先找入度为 0 0 0的顶点,然后删掉,继续找入度为 0 0 0的顶点,依次下去。找反链的步骤也是这样,先找极大元,然后将其删掉,再继续找极大元。

定理2(Dilworth定理):设有限偏序集 ( X , ≤ ) (X,\le) (X,)的宽度为 m m m,则存在划分 X = ⋃ i = 1 m A i X=\bigcup_{i=1}^{m} A_i X=i=1mAi使得每个 A i A_i Ai都是链。
证明以后补。

我们来看应用:
对于一个数组 ( x 1 , x 2 , . . . , x n ) (x_1,x_2,...,x_n) (x1,x2,...,xn),我们考虑将其分解为若干个下降子序列的并,这该如何做呢。
为了方便叙述,我们举一个例子,设数组为 A = ( 4 , 2 , 4 , 5 , 3 , 7 ) A=(4,2,4,5,3,7) A=(4,2,4,5,3,7),连同下标在一起,数组为 A = ( 4 1 , 2 2 , 4 3 , 5 4 , 3 5 , 7 6 ) A=(4_1,2_2,4_3,5_4,3_5,7_6) A=(41,22,43,54,35,76)。定义序关系为, a i ≤ b j a_i\le b_j aibj当且仅当 a ≤ b a\le b ab并且 i ≤ j i\le j ij。按照这个序关系的定义,一个数比另一个数小,当且仅当第一个数出现在第二个数左边,并且数值也更小。按照这个序关系, A A A中的最长链就是 ( 2 2 , 4 3 , 5 4 , 7 6 ) (2_2,4_3,5_4,7_6) (22,43,54,76),其实也就是 A A A中的最长上升子序列。由分解定理, A A A存在四条反链。我们考虑一下这里的反链是个什么意思。对于 A A A的某个反链而言,其中两个元素 a i a_i ai b j b_j bj不可比较,就意味着它们的数值大小关系和它们的下标大小关系”不对应“,换句话说,如果将它们按照下标由小到大排,那么数值就是由大到小的,也就是说,一个反链就对应了一个(严格)下降子序列。要求反链的话,就要求极大元。这里我们要求四轮极大元。
第一轮,在 ( 4 1 , 2 2 , 4 3 , 5 4 , 3 5 , 7 6 ) (4_1,2_2,4_3,5_4,3_5,7_6) (41,22,43,54,35,76)中, 7 6 7_6 76是极大元,别的都不是;
第二轮,在 ( 4 1 , 2 2 , 4 3 , 5 4 , 3 5 ) (4_1,2_2,4_3,5_4,3_5) (41,22,43,54,35)中, 3 5 3_5 35 5 4 5_4 54都是极大元,别的都不是;
第三轮,在 ( 4 1 , 2 2 , 4 3 ) (4_1,2_2,4_3) (41,22,43)中, 4 3 4_3 43是极大元,别的都不是;
第四轮,剩下的两个数 ( 4 1 , 2 2 ) (4_1,2_2) (41,22)都是极大元。
每轮的极大元都是一个反链,所以得到的四个反链就是 ( 7 6 ) , ( 5 4 , 3 5 ) , ( 4 3 ) , ( 4 1 , 2 2 ) (7_6),(5_4,3_5),(4_3),(4_1,2_2) (76),(54,35),(43),(41,22)。我们发现,其实就是将 A A A拆成了四个下降子序列。由分解定理,这是 A A A能拆的最多的下降子序列个数了。
反过来想就是这样的,如果一道题目问,一个数组 A A A能分拆成的最多严格下降子序列的个数是多少,那么答案就是 A A A的最长(不严格)上升子序列的长度。

可以注意到,上述算法就是每次取极大元。接下来考虑求 A A A的四个反链的更简单的算法。算法如下:
1、设已经开了若干个反链,遇到新的数的时候,如果它比所有反链的最小值都要大于等于,那么这个数无法接到任何一个已经开的反链上去,则将它自成一个反链;
2、如果遇到的新的数可以接到某个反链后面,那么就挑最小值最小的那条反链接上去。

按照这个算法,求 A A A的四个反链的做法就是这样的:
遇到 4 1 4_1 41,开一个新的反链, ( 4 1 ) (4_1) (41)
遇到 2 2 2_2 22,可以接上去,得 ( 4 1 , 2 2 ) (4_1,2_2) (41,22)
遇到 4 3 4_3 43,接不上去,开一个新反链,得 ( 4 1 , 2 2 ) , ( 4 3 ) (4_1,2_2),(4_3) (41,22),(43)
遇到 5 4 5_4 54,接不上去,开一个新反链,得 ( 4 1 , 2 2 ) , ( 4 3 ) , ( 5 4 ) (4_1,2_2),(4_3),(5_4) (41,22),(43),(54)
遇到 3 5 3_5 35,可以接到两个数上去,我们挑最小的接上去,得 ( 4 1 , 2 2 ) , ( 4 3 , 3 5 ) , ( 5 4 ) (4_1,2_2),(4_3,3_5),(5_4) (41,22),(43,35),(54)
遇到 7 6 7_6 76,接不上去,开一个新反链,得 ( 4 1 , 2 2 ) , ( 4 3 , 3 5 ) , ( 5 4 ) , ( 7 6 ) (4_1,2_2),(4_3,3_5),(5_4),(7_6) (41,22),(43,35),(54),(76)
遍历完毕,正好得到四个反链。证明以后补。

接下来考虑严格偏序集的分解定理。 X X X上的一个严格偏序 R R R,指的是:
1、反自反性,对于任意 a a a ( a , a ) ∉ R (a,a)\notin R (a,a)/R
2、非对称性, ( a , b ) ∈ R ⇒ ( b , a ) ∉ R (a,b)\in R\Rightarrow (b,a)\notin R (a,b)R(b,a)/R(注意,反对称性和非对称性不是一个意思。反自反性允许 ( a , a ) ∈ R (a,a)\in R (a,a)R,但是非对称性不允许);
3、传递性, ( a , b ) ∈ R , ( b , c ) ∈ R ⇒ ( a , c ) ∈ R (a,b)\in R, (b,c)\in R\Rightarrow (a,c)\in R (a,b)R,(b,c)R(a,c)R
严格偏序集一般记为 ( X , < ) (X,<) (X,<)。严格偏序集里也可以定义极大、极小、最大、最小元,极大元指的是没有元素比它“大”(它自己也不比它大),最大元指的是它别的元素都大(除了它自己)。于是,严格偏序集也有链和反链的概念。由于偏序集的分解定理里并没有用到自反性和对称性,所以证明可以直接套用过来用。具体就不叙述了。

  • 5
    点赞
  • 9
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值