题目地址:
https://leetcode.com/problems/house-robber/
有一个数组 A A A代表每个房子的财富值。有个小偷想偷尽可能多的财富,但他不能同时偷相邻的两个房子。问他最多能偷多少钱。
法1:动态规划。设
f
[
i
]
f[i]
f[i]代表到第
i
i
i个房子为止,他能偷的最大财富。设每个房子的财富值为
h
[
i
]
h[i]
h[i]。如果已知到第
i
−
1
i-1
i−1个房子为止,他能偷的最大财富值,那么到第
i
i
i个房子为止,能偷的最大财富值有两种情况:
1、他偷第
i
i
i个房子,那么最大是
f
[
i
−
2
]
+
h
[
i
]
f[i-2]+h[i]
f[i−2]+h[i];
2、他不偷第
i
i
i个房子,那么最大是
f
[
i
−
1
]
f[i-1]
f[i−1]。
取两者较大的即可。代码如下:
public class Solution {
public int rob(int[] nums) {
if (nums == null || nums.length == 0) {
return 0;
}
// dp代表第i栋房子为止,小偷能偷到的最大财富值(i从1开始计算)
int[] dp = new int[nums.length + 1];
dp[1] = nums[0];
for (int i = 1; i < nums.length; i++) {
dp[i + 1] = Math.max(nums[i] + dp[i - 1], dp[i]);
}
return dp[nums.length];
}
}
时空复杂度 O ( n ) O(n) O(n)。
观察得出,当前的值只依赖于前两个位置的值,所以可以用滚动数组的方式优化空间。
public class Solution {
public int rob(int[] nums) {
if (nums == null || nums.length == 0) {
return 0;
}
int[] dp = new int[3];
dp[1] = nums[0];
// ind记录当前更新到哪儿了
int ind = 1;
for (int i = 1; i < nums.length; i++) {
// 滚动一下,然后更新
ind = (ind + 1) % 3;
dp[ind] = Math.max(dp[(ind + 1) % 3] + nums[i], dp[(ind + 2) % 3]);
}
return dp[ind];
}
}
时间复杂度不变,空间 O ( 1 ) O(1) O(1)。
法2:状态机(本质上其实还是动态规划)。下面用图论的语言来叙述这个问题。考虑一个两个顶点的图 G G G,两个顶点分别为 v 1 v_1 v1和 v 2 v_2 v2,其中 v 1 v_1 v1表示“最后一个房屋要选”这个状态, v 2 v_2 v2表示“最后一个房屋不选”这个状态。那么,存在的有向边就是 ( v 0 , v 0 ) (v_0,v_0) (v0,v0), ( v 0 , v 1 ) (v_0,v_1) (v0,v1)和 ( v 1 , v 0 ) (v_1,v_0) (v1,v0),因为如果某个房子不选,那么下一个房子可以选或者不选;而某个房子选了,下一个房子就不能选。所以整个题目就相当于,在这个图上走 n n n步,所能得到的最大收益是多少(注意这里和图论里的边权并不一样,这里的边权是跟走的步数相关的,并不是个确定值)。设 f [ i ] [ 0 ] f[i][0] f[i][0]表示走了 i i i步停留在 v 0 v_0 v0时获得的最大收益, f [ i ] [ 1 ] f[i][1] f[i][1]表示走了 i i i步停留在 v 1 v_1 v1时获得的最大收益。那么就有: { f [ i ] [ 0 ] = max { f [ i − 1 ] [ 0 ] , f [ i − 1 ] [ 1 ] } f [ i ] [ 1 ] = f [ i − 1 ] [ 0 ] + A [ i ] \begin{cases}f[i][0]=\max\{f[i-1][0],f[i-1][1]\}\\f[i][1]=f[i-1][0] +A[i] \end{cases} {f[i][0]=max{f[i−1][0],f[i−1][1]}f[i][1]=f[i−1][0]+A[i]最后要返回的结果就是 max { f [ n ] [ 0 ] , f [ n ] [ 1 ] } \max\{f[n][0],f[n][1]\} max{f[n][0],f[n][1]}。其中 f [ 0 ] [ 0 ] = 0 , f [ 0 ] [ 1 ] = A [ 0 ] f[0][0]=0,f[0][1]=A[0] f[0][0]=0,f[0][1]=A[0]。代码如下:
public class Solution {
public int rob(int[] nums) {
if (nums == null || nums.length == 0) {
return 0;
}
int len = nums.length;
int[][] dp = new int[len][2];
dp[0][0] = 0;
dp[0][1] = nums[0];
for (int i = 1; i < len; i++) {
dp[i][0] = Math.max(dp[i - 1][0], dp[i - 1][1]);
dp[i][1] = dp[i - 1][0] + nums[i];
}
return Math.max(dp[len - 1][0], dp[len - 1][1]);
}
}
时空复杂度 O ( n ) O(n) O(n)。
C++:
class Solution {
public:
int rob(vector<int>& nums) {
int n = nums.size();
vector<int> f(n + 1), g(n + 1);
for (int i = 1; i <= n; i++) {
f[i] = nums[i - 1] + g[i - 1];
g[i] = max(f[i - 1], g[i - 1]);
}
return max(f[n], g[n]);
}
};
时空复杂度一样。