【Leetcode】198. House Robber

题目地址:

https://leetcode.com/problems/house-robber/

有一个数组 A A A代表每个房子的财富值。有个小偷想偷尽可能多的财富,但他不能同时偷相邻的两个房子。问他最多能偷多少钱。

法1:动态规划。设 f [ i ] f[i] f[i]代表到第 i i i个房子为止,他能偷的最大财富。设每个房子的财富值为 h [ i ] h[i] h[i]。如果已知到第 i − 1 i-1 i1个房子为止,他能偷的最大财富值,那么到第 i i i个房子为止,能偷的最大财富值有两种情况:
1、他偷第 i i i个房子,那么最大是 f [ i − 2 ] + h [ i ] f[i-2]+h[i] f[i2]+h[i]
2、他不偷第 i i i个房子,那么最大是 f [ i − 1 ] f[i-1] f[i1]
取两者较大的即可。代码如下:

public class Solution {
    public int rob(int[] nums) {
        if (nums == null || nums.length == 0) {
            return 0;
        }
        
        // dp代表第i栋房子为止,小偷能偷到的最大财富值(i从1开始计算)
        int[] dp = new int[nums.length + 1];
        dp[1] = nums[0];
        
        for (int i = 1; i < nums.length; i++) {
            dp[i + 1] = Math.max(nums[i] + dp[i - 1], dp[i]);
        }
        
        return dp[nums.length];
    }
}

时空复杂度 O ( n ) O(n) O(n)

观察得出,当前的值只依赖于前两个位置的值,所以可以用滚动数组的方式优化空间。

public class Solution {
    public int rob(int[] nums) {
        if (nums == null || nums.length == 0) {
            return 0;
        }
        
        int[] dp = new int[3];
        dp[1] = nums[0];
        // ind记录当前更新到哪儿了
		int ind = 1;
        for (int i = 1; i < nums.length; i++) {
        	// 滚动一下,然后更新
            ind = (ind + 1) % 3;
            dp[ind] = Math.max(dp[(ind + 1) % 3] + nums[i], dp[(ind + 2) % 3]);
        }
        
        return dp[ind];
    }
}

时间复杂度不变,空间 O ( 1 ) O(1) O(1)

法2:状态机(本质上其实还是动态规划)。下面用图论的语言来叙述这个问题。考虑一个两个顶点的图 G G G,两个顶点分别为 v 1 v_1 v1 v 2 v_2 v2,其中 v 1 v_1 v1表示“最后一个房屋要选”这个状态, v 2 v_2 v2表示“最后一个房屋不选”这个状态。那么,存在的有向边就是 ( v 0 , v 0 ) (v_0,v_0) (v0,v0) ( v 0 , v 1 ) (v_0,v_1) (v0,v1) ( v 1 , v 0 ) (v_1,v_0) (v1,v0),因为如果某个房子不选,那么下一个房子可以选或者不选;而某个房子选了,下一个房子就不能选。所以整个题目就相当于,在这个图上走 n n n步,所能得到的最大收益是多少(注意这里和图论里的边权并不一样,这里的边权是跟走的步数相关的,并不是个确定值)。设 f [ i ] [ 0 ] f[i][0] f[i][0]表示走了 i i i步停留在 v 0 v_0 v0时获得的最大收益, f [ i ] [ 1 ] f[i][1] f[i][1]表示走了 i i i步停留在 v 1 v_1 v1时获得的最大收益。那么就有: { f [ i ] [ 0 ] = max ⁡ { f [ i − 1 ] [ 0 ] , f [ i − 1 ] [ 1 ] } f [ i ] [ 1 ] = f [ i − 1 ] [ 0 ] + A [ i ] \begin{cases}f[i][0]=\max\{f[i-1][0],f[i-1][1]\}\\f[i][1]=f[i-1][0] +A[i] \end{cases} {f[i][0]=max{f[i1][0],f[i1][1]}f[i][1]=f[i1][0]+A[i]最后要返回的结果就是 max ⁡ { f [ n ] [ 0 ] , f [ n ] [ 1 ] } \max\{f[n][0],f[n][1]\} max{f[n][0],f[n][1]}。其中 f [ 0 ] [ 0 ] = 0 , f [ 0 ] [ 1 ] = A [ 0 ] f[0][0]=0,f[0][1]=A[0] f[0][0]=0,f[0][1]=A[0]。代码如下:

public class Solution {
    public int rob(int[] nums) {
    	if (nums == null || nums.length == 0) {
    		return 0;
    	}
    	
    	int len = nums.length;
        int[][] dp = new int[len][2];
        dp[0][0] = 0;
        dp[0][1] = nums[0];
    
        for (int i = 1; i < len; i++) {
            dp[i][0] = Math.max(dp[i - 1][0], dp[i - 1][1]);
            dp[i][1] = dp[i - 1][0] + nums[i];
        }
        
        return Math.max(dp[len - 1][0], dp[len - 1][1]);
    }
}

时空复杂度 O ( n ) O(n) O(n)

C++:

class Solution {
 public:
  int rob(vector<int>& nums) {
    int n = nums.size();
    vector<int> f(n + 1), g(n + 1);
    for (int i = 1; i <= n; i++) {
      f[i] = nums[i - 1] + g[i - 1];
      g[i] = max(f[i - 1], g[i - 1]);
    }

    return max(f[n], g[n]);
  }
};

时空复杂度一样。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值