【数学】Catalan数

Catalan数是一个特殊的正整数序列,其定义是 C n = 1 n + 1 ( 2 n n ) C_n=\frac{1}{n+1}{2n \choose n} Cn=n+11(n2n)这个序列频繁的出现在非常多的组合数学的场合中。为了加深印象,特写一些总结。

1、给定整数 n n n,则合法的长度为 2 n 2n 2n的括号序列总共有 C n C_n Cn个。

证明:想象一个从 ( 0 , 0 ) (0,0) (0,0) ( n , n ) (n,n) (n,n)的正方形网格,给定一个长度为 2 n 2n 2n的合法括号序列,显然左右括号的个数分别都等于 n n n。我们将某个括号序列和从 ( 0 , 0 ) (0,0) (0,0) ( n , n ) (n,n) (n,n)的一条路径对应,如果遇到左括号,就向右走一步,如果遇到右括号,就向上走一步。那么合法的括号序列和所有从 ( 0 , 0 ) (0,0) (0,0) ( n , n ) (n,n) (n,n)且不穿过 y = x y=x y=x这条直线的路径形成一个一一对应。于是,我们只需要求这样的路径的总个数即可。

首先,如果允许穿过 y = x y=x y=x这条直线,那么总路径个数是 ( 2 n n ) {2n \choose n} (n2n)。我们只需要排除掉非法的路径即可。想象一条非法路径,它必然会触碰到 y = x + 1 y=x+1 y=x+1这条线。对于这个非法路径中的第一次碰到 y = x + 1 y=x+1 y=x+1这条线之后的那一段,关于 y = x + 1 y=x+1 y=x+1这条线做镜面反射,就得到了一条到达 ( n − 1 , n + 1 ) (n-1,n+1) (n1,n+1)的一条路径。这种对应是个双射,所以非法路径的数量就是 ( 2 n n + 1 ) {2n\choose n+1} (n+12n),所以 C n = ( 2 n n ) − ( 2 n n + 1 ) = ( 2 n ) ! n ! n ! − ( 2 n ) ! ( n + 1 ) ! ( n − 1 ) ! = ( 1 − n n + 1 ) ( 2 n ) ! n ! n ! = 1 n + 1 ( 2 n n ) C_n={2n \choose n}-{2n\choose n+1}\\=\frac{(2n)!}{n!n!}-\frac{(2n)!}{(n+1)!(n-1)!}\\=(1-\frac{n}{n+1})\frac{(2n)!}{n!n!}\\=\frac{1}{n+1}{2n \choose n} Cn=(n2n)(n+12n)=n!n!(2n)!(n+1)!(n1)!(2n)!=(1n+1n)n!n!(2n)!=n+11(n2n)

2、 C n C_n Cn的估计。由Stirling公式: n ! ∼ ( n e ) n 2 π n n!\sim (\frac{n}{e})^n\sqrt{2\pi n} n!(en)n2πn 得: C n ∼ 1 n + 1 ( 2 n e ) 2 n 2 π 2 n ( e n ) 2 n 1 2 π n = 4 n n + 1 1 π n ∼ 4 n n 3 2 π C_n\sim \frac{1}{n+1}(\frac{2n}{e})^{2n}\sqrt{2\pi 2n}(\frac{e}{n})^{2n}\frac{1}{2\pi n}\\=\frac{4^n}{n+1}\frac{1}{\sqrt{\pi n}}\\\sim \frac{4^n}{n^{\frac{3}{2}}\sqrt{\pi}} Cnn+11(e2n)2n2π2n (ne)2n2πn1=n+14nπn 1n23π 4n

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值