【Leetcode】89. Gray Code

题目地址:

https://leetcode.com/problems/gray-code/

生成 n n n位的格雷码。 n n n位格雷码是个int的数组,其每相邻的两个数的二进制表示只有一位不同,并且首尾也满足这个条件。

主要思路是这样:如果我们已经得到了 k k k位格雷码,那么 k + 1 k+1 k+1位格雷码可以这样生成:先将得到的 k k k位格雷码反序,然后每个数字都加上 1 < < k = 2 k 1<<k=2^k 1<<k=2k即可。这有点像逆序的层序遍历二叉树。代码如下:

import java.util.ArrayList;
import java.util.List;

public class Solution {
    public List<Integer> grayCode(int n) {
        List<Integer> res = new ArrayList<>();
        res.add(0);
    
        for (int i = 0; i < n; i++) {
            int size = res.size();
            for (int j = size - 1; j >= 0; j--) {
                res.add(res.get(j) + (1 << i));
            }
        }
        
        return res;
    }
}

时间复杂度 O ( 2 n ) O(2^n) O(2n)

算法正确性证明。当 n = 1 n=1 n=1时显然成立。假设当 n = k n=k n=k时,上述算法可以正确地产生格雷码。那么对于这个格雷码 a 1 , . . . , a 2 k a_1,...,a_{2^k} a1,...,a2k,最先加到末尾的数是 a 2 k + 2 k a_{2^k}+2^k a2k+2k,这个数与 a 2 k a_{2^k} a2k只有最高位不同,所以至少当前这一步是可行的。接下来由归纳假设,后面加的数字与前一位也只有一位不同,这样一直加到了末尾。很显然 a 1 a_1 a1 a 1 + 2 k a_1+2^k a1+2k也只有最高位不同。所以这样生成的新的序列仍然是格雷码。由数学归纳法,算法正确。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值