题目地址:
https://leetcode.com/problems/gray-code/
生成 n n n位的格雷码。 n n n位格雷码是个int的数组,其每相邻的两个数的二进制表示只有一位不同,并且首尾也满足这个条件。
主要思路是这样:如果我们已经得到了 k k k位格雷码,那么 k + 1 k+1 k+1位格雷码可以这样生成:先将得到的 k k k位格雷码反序,然后每个数字都加上 1 < < k = 2 k 1<<k=2^k 1<<k=2k即可。这有点像逆序的层序遍历二叉树。代码如下:
import java.util.ArrayList;
import java.util.List;
public class Solution {
public List<Integer> grayCode(int n) {
List<Integer> res = new ArrayList<>();
res.add(0);
for (int i = 0; i < n; i++) {
int size = res.size();
for (int j = size - 1; j >= 0; j--) {
res.add(res.get(j) + (1 << i));
}
}
return res;
}
}
时间复杂度 O ( 2 n ) O(2^n) O(2n)。
算法正确性证明。当 n = 1 n=1 n=1时显然成立。假设当 n = k n=k n=k时,上述算法可以正确地产生格雷码。那么对于这个格雷码 a 1 , . . . , a 2 k a_1,...,a_{2^k} a1,...,a2k,最先加到末尾的数是 a 2 k + 2 k a_{2^k}+2^k a2k+2k,这个数与 a 2 k a_{2^k} a2k只有最高位不同,所以至少当前这一步是可行的。接下来由归纳假设,后面加的数字与前一位也只有一位不同,这样一直加到了末尾。很显然 a 1 a_1 a1与 a 1 + 2 k a_1+2^k a1+2k也只有最高位不同。所以这样生成的新的序列仍然是格雷码。由数学归纳法,算法正确。