题目地址:
https://www.lintcode.com/problem/decode-string/description
给定一个字符串,其中有数字,左右中括号和英文字母,要求按照如下规则解析字符串:
1、如果一段字母没有被中括号括起来,则保持原样;
2、如果一段字母被中括号括起来,题目保证中括号前面会有一个非负整数做标记,则将括号所括内容重复那个整数那么多次并替换原来的片段。替换过程要按照由内层到外层的括号的顺序进行。
思路是用两个栈,一个存字符串片段,另一个存数字。遇到数字则把数字解析出来进数字栈中,遇到字符串片段也同理(遇到左括号也要进字符串栈中,以便后面判断哪段字符串是括号括起来的);如果遇到右括号,那么我们就能判断字符串栈中从左括号到栈顶的部分是需要重复的,而重复的遍数恰好就是数字栈的栈顶,于是将其重复若干次后再进字符串栈中(要注意,字符串栈的字符串出栈的顺序是后进先出的,要保持原序的话,必须用两步翻转法,也就是说,出栈时要翻转一下append到临时StringBuilder中去,最后重复若干次进栈的时候还需要翻转一次再进去)。代码如下:
import java.util.ArrayDeque;
import java.util.Deque;
public class Solution {
/**
* @param s: an expression includes numbers, letters and brackets
* @return: a string
*/
public String expressionExpand(String s) {
// write your code here
Deque<String> stringStack = new ArrayDeque<>();
Deque<Integer> numStack = new ArrayDeque<>();
for (int i = 0; i < s.length(); i++) {
if (Character.isLetter(s.charAt(i))) {
// 如果遇到字母,则解析出字母片段并入字符串栈
int j = i + 1;
while (j < s.length() && Character.isLetter(s.charAt(j))) {
j++;
}
stringStack.push(s.substring(i, j));
// 截取完字符串后要记得把i移动到最后一个字母处,这样i++后就会从后面开始解析
i = j - 1;
} else if (Character.isDigit(s.charAt(i))) {
// 与上面同理
int j = i + 1;
while (j < s.length() && Character.isDigit(s.charAt(j))) {
j++;
}
numStack.push(Integer.parseInt(s.substring(i, j)));
i = j - 1;
} else if (s.charAt(i) == '[') {
stringStack.push("[");
} else {
// 这里代表遇到了右括号,则将左括号到栈顶所有字符串连起来的大字符串重复若干次再进栈
StringBuilder sb = new StringBuilder();
while (!"[".equals(stringStack.peek())) {
sb.append(new StringBuilder(stringStack.pop()).reverse());
}
stringStack.pop();
stringStack.push(sb.reverse().toString().repeat(numStack.pop()));
}
}
// 这里可以利用双端队列的特性,从队尾出队append到sb后面,省去了再次翻转的麻烦
StringBuilder sb = new StringBuilder();
while (!stringStack.isEmpty()) {
sb.append(stringStack.pollLast());
}
return sb.toString();
}
}
时间复杂度 O ( n ) O(n) O(n),空间与最后解析出的字符串的长度有关。
注解:
在java的Deque中,如果将其当做栈用,那么栈顶是指的队头(也就是说pollFirst
方法等同于pop
),栈底是队尾(也就是说pollLast
方法等同于将栈底取出来)。