题目地址:
https://www.lintcode.com/problem/narcissistic-number/description
给定一个正整数 n n n,求 n n n位的水仙花数。这里的 n n n位指的是它作为十进制数有多少位;水仙花数指,如果 x = a n − 1 1 0 n − 1 + a n − 2 1 0 n − 2 + . . . + a 1 10 + a 0 x=a_{n-1}10^{n-1}+a_{n-2}10^{n-2}+...+a_110+a_0 x=an−110n−1+an−210n−2+...+a110+a0,那么 x = ∑ i = 0 n − 1 a i n x=\sum_{i=0}^{n-1}a_i^n x=∑i=0n−1ain。
直接验证即可。代码如下:
import java.util.ArrayList;
import java.util.List;
public class Solution {
/**
* @param n: The number of digits
* @return: All narcissistic numbers with n digits
*/
public List<Integer> getNarcissisticNumbers(int n) {
// write your code here
List<Integer> res = new ArrayList<>();
for (int i = getRange(n)[0]; i <= getRange(n)[1]; i++) {
List<Integer> digits = getDigit(i);
int sum = 0;
for (int dig : digits) {
sum += (int) Math.pow(dig, n);
}
if (sum == i) {
res.add(i);
}
}
return res;
}
// 求一下n位数的范围
public int[] getRange(int n) {
if (n == 1) {
return new int[]{0, 9};
}
int j = (int) Math.pow(10, n - 1);
return new int[]{j, j * 10 - 1};
}
public List<Integer> getDigit(int n) {
List<Integer> list = new ArrayList<>();
if (n == 0) {
list.add(0);
return list;
}
while (n != 0) {
list.add(n % 10);
n /= 10;
}
return list;
}
}
时空复杂度 O ( 1 0 n ) O(10^{n}) O(10n)。