【Leetcode】1730. Shortest Path to Get Food

该博客介绍了一个使用双向广度优先搜索(BFS)解决从起点到终点的最短路径问题的方法。给定一个包含障碍物的网格,算法从起点和所有终点同时开始搜索,一旦两者相遇,返回步数。代码中定义了`getFood`函数来实现这个过程,包括`oneStep`函数来进行单步搜索和`inBound`函数来检查位置的有效性。整个算法的时间复杂度为O(mn),其中m和n分别是网格的行数和列数。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目地址:

https://leetcode.com/problems/shortest-path-to-get-food/

给定一个 m m m n n n列的二维矩阵,其中只含四个符号*#OX,分别代表起点,终点(起点唯一,但终点不唯一),空地和障碍物。每一步可以走四个方向,不能走到障碍物上。问从起点出发最少走多少步可以走到任意一个终点。

思路是双向BFS。从两个方向同时搜即可。代码如下:

import java.util.LinkedList;
import java.util.Queue;

public class Solution {
    public int getFood(char[][] grid) {
        int m = grid.length, n = grid[0].length;
        Queue<int[]> beginQueue = new LinkedList<>(), endQueue = new LinkedList<>();
        boolean[][] beginVisited = new boolean[m][n], endVisited = new boolean[m][n];
        for (int i = 0; i < m; i++) {
            for (int j = 0; j < n; j++) {
                if (grid[i][j] == '*') {
                    beginQueue.offer(new int[]{i, j});
                    beginVisited[i][j] = true;
                } else if (grid[i][j] == '#') {
                    endQueue.offer(new int[]{i, j});
                    endVisited[i][j] = true;
                }
            }
        }
        
        int res = 0;
        while (!beginQueue.isEmpty() && !endQueue.isEmpty()) {
        	// 从起点往终点走一步
            res++;
            if (oneStep(beginQueue, beginVisited, endVisited, grid)) {
                return res;
            }
            
            // 从终点往起点走一步,注意这里的函数参数要变换一下
            res++;
            if (oneStep(endQueue, endVisited, beginVisited, grid)) {
                return res;
            }
        }
        
        return -1;
    }
    
    // 返回从起点是否走到了终点的范围
    private boolean oneStep(Queue<int[]> beginQueue, boolean[][] beginVisited, boolean[][] endVisited, char[][] grid) {
        int[] d = {1, 0, -1, 0, 1};
        
        int size = beginQueue.size();
        for (int i = 0; i < size; i++) {
            int[] cur = beginQueue.poll();
            for (int j = 0; j < 4; j++) {
                int nextX = cur[0] + d[j], nextY = cur[1] + d[j + 1];
                if (inBound(nextX, nextY, grid) && !beginVisited[nextX][nextY] && grid[nextX][nextY] != 'X') {
                    if (endVisited[nextX][nextY]) {
                        return true;
                    }
                    
                    beginVisited[nextX][nextY] = true;
                    beginQueue.offer(new int[]{nextX, nextY});
                }
            }
        }
        
        return false;
    }
    
    private boolean inBound(int x, int y, char[][] grid) {
        return 0 <= x && x < grid.length && 0 <= y && y < grid[0].length;
    }
}

时空复杂度 O ( m n ) O(mn) O(mn)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值