题目地址:
https://www.acwing.com/problem/content/841/
维护一个集合,初始为空,支持如下操作:
(1)“I x”,插入一个数
x
x
x;
(2)“PM”,输出当前集合中的最小值;
(3)“DM”,删除当前集合中的最小值(数据保证此时的最小值唯一);
(4)“D k”,删除第
k
k
k个插入的数;
(5)“C k x”,修改第
k
k
k个插入的数,将其变为
x
x
x;
现在要进行
N
N
N次操作,对于所有第
2
2
2个操作,输出当前集合的最小值。
输入格式:
第一行包含整数
N
N
N。接下来
N
N
N行,每行包含一个操作指令,操作指令为”I x”,”PM”,”DM”,”D k”或”C k x”中的一种。
输出格式:
对于每个输出指令“PM”,输出一个结果,表示当前集合中的最小值。每个结果占一行。
数据范围:
1
≤
N
≤
1
0
5
1\le N\le 10^5
1≤N≤105
−
1
0
9
≤
x
≤
1
0
9
-10^9\le x\le 10^9
−109≤x≤109
可以用最小堆。但是要支持删除任意值的操作。我们这里要记录第 k k k次插入的数是在哪个下标(在操作 4 4 4和 5 5 5的时候需要用),并且还要知道堆里的下标对应的是第几次插入(这在调整堆的时候需要用)。可以开两个数组存储这个信息。代码如下:
#include <iostream>
#include <algorithm>
#include <string.h>
using namespace std;
const int N = 100010;
// ph从下标映射到堆,hp从堆映射到下标
int h[N], ph[N], hp[N], s;
void heap_swap(int a, int b) {
swap(ph[hp[a]], ph[hp[b]]);
swap(hp[a], hp[b]);
swap(h[a], h[b]);
}
void down(int u) {
while (u * 2 <= s) {
int t = u;
if (h[u * 2] < h[t]) t = u * 2;
if (u * 2 + 1 <= s && h[u * 2 + 1] < h[t]) t = u * 2 + 1;
if (u != t) {
heap_swap(u, t);
u = t;
} else break;
}
}
void up(int u) {
while (u >> 1 && h[u >> 1] > h[u]) {
heap_swap(u >> 1, u);
u >>= 1;
}
}
int main() {
int n, m = 0;
cin >> n;
while (n--) {
char op[10];
int k, x;
scanf("%s", op);
if (!strcmp(op, "I")) {
cin >> x;
s++;
m++;
// 当前是第m次插入
ph[m] = s;
hp[s] = m;
h[s] = x;
up(s);
} else if (!strcmp(op, "PM")) cout << h[1] << endl;
else if (!strcmp(op, "DM")) {
heap_swap(1, s);
s--;
down(1);
} else if (!strcmp(op, "D")) {
cin >> k;
k = ph[k];
heap_swap(k, s);
s--;
down(k), up(k);
} else if (!strcmp(op, "C")) {
cin >> k >> x;
k = ph[k];
h[k] = x;
down(k), up(k);
}
}
return 0;
}
所有操作时间复杂度 O ( log n ) O(\log n) O(logn),空间 O ( n ) O(n) O(n)。