【ACWing】839. 模拟堆

题目地址:

https://www.acwing.com/problem/content/841/

维护一个集合,初始为空,支持如下操作:
(1)“I x”,插入一个数 x x x
(2)“PM”,输出当前集合中的最小值;
(3)“DM”,删除当前集合中的最小值(数据保证此时的最小值唯一);
(4)“D k”,删除第 k k k个插入的数;
(5)“C k x”,修改第 k k k个插入的数,将其变为 x x x
现在要进行 N N N次操作,对于所有第 2 2 2个操作,输出当前集合的最小值。

输入格式:
第一行包含整数 N N N。接下来 N N N行,每行包含一个操作指令,操作指令为”I x”,”PM”,”DM”,”D k”或”C k x”中的一种。

输出格式:
对于每个输出指令“PM”,输出一个结果,表示当前集合中的最小值。每个结果占一行。

数据范围:
1 ≤ N ≤ 1 0 5 1\le N\le 10^5 1N105
− 1 0 9 ≤ x ≤ 1 0 9 -10^9\le x\le 10^9 109x109

可以用最小堆。但是要支持删除任意值的操作。我们这里要记录第 k k k次插入的数是在哪个下标(在操作 4 4 4 5 5 5的时候需要用),并且还要知道堆里的下标对应的是第几次插入(这在调整堆的时候需要用)。可以开两个数组存储这个信息。代码如下:

#include <iostream>
#include <algorithm>
#include <string.h>
using namespace std;

const int N = 100010;
// ph从下标映射到堆,hp从堆映射到下标
int h[N], ph[N], hp[N], s;

void heap_swap(int a, int b) {
    swap(ph[hp[a]], ph[hp[b]]);
    swap(hp[a], hp[b]);
    swap(h[a], h[b]);
}

void down(int u) {
    while (u * 2 <= s) {
        int t = u;
        if (h[u * 2] < h[t]) t = u * 2;
        if (u * 2 + 1 <= s && h[u * 2 + 1] < h[t]) t = u * 2 + 1;
        if (u != t) {
            heap_swap(u, t);
            u = t;
        } else break;
    }
}

void up(int u) {
    while (u >> 1 && h[u >> 1] > h[u]) {
        heap_swap(u >> 1, u);
        u >>= 1;
    }
}

int main() {
    int n, m = 0;
    cin >> n;

    while (n--) {
        char op[10];
        int k, x;
        scanf("%s", op);
        if (!strcmp(op, "I")) {
            cin >> x;
            s++;
            m++;
   			// 当前是第m次插入
            ph[m] = s;
            hp[s] = m;
            h[s] = x;
            up(s);
        } else if (!strcmp(op, "PM")) cout << h[1] << endl;
        else if (!strcmp(op, "DM")) {
            heap_swap(1, s);
            s--;
            down(1);
        } else if (!strcmp(op, "D")) {
            cin >> k;
            k = ph[k];
            heap_swap(k, s);
            s--;
            down(k), up(k);
        } else if (!strcmp(op, "C")) {
            cin >> k >> x;
            k = ph[k];
            h[k] = x;
            down(k), up(k);
        }
    }

    return 0;
}

所有操作时间复杂度 O ( log ⁡ n ) O(\log n) O(logn),空间 O ( n ) O(n) O(n)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值