【ACWing】873. 欧拉函数

题目地址:

https://www.acwing.com/problem/content/875/

给定 n n n个正整数 a i a_i ai,求 ϕ ( a i ) \phi (a_i) ϕ(ai) ϕ ( x ) \phi(x) ϕ(x)是欧拉函数,表示小于等于 x x x的且与之互素的数的个数。

输入格式:
第一行包含整数 n n n。接下来 n n n行,每行包含一个正整数 a i a_i ai

输出格式:
输出共 n n n行,每行输出一个正整数 a i a_i ai的欧拉函数。

数据范围:
1 ≤ n ≤ 100 1\le n\le 100 1n100
1 ≤ a i ≤ 2 × 1 0 9 1\le a_i\le 2\times 10^9 1ai2×109

若正整数 N N N有素因子分解 N = p 1 α 1 p 2 α 2 . . . p k α k N=p_1^{\alpha_1}p_2^{\alpha_2}...p_k^{\alpha_k} N=p1α1p2α2...pkαk,那么有公式 ϕ ( N ) = N ( 1 − 1 p 1 ) ( 1 − 1 p 2 ) . . . ( 1 − 1 p k ) \phi (N)=N(1-\frac{1}{p_1})(1-\frac{1}{p_2})...(1-\frac{1}{p_k}) ϕ(N)=N(1p11)(1p21)...(1pk1)这可以通过容斥原理来推导。我们看哪些数与 N N N不互素,显然含因子 p 1 , . . . , p k p_1,...,p_k p1,...,pk的数与 N N N不互素,我们只需要求小于等于 N N N且含因子 p 1 , . . . , p k p_1,...,p_k p1,...,pk的数的个数即可。由容斥原理,个数是 N ( ∑ i 1 p i − ∑ i 1 < i 2 1 p i 1 p i 2 + ∑ i 1 < i 2 < i 3 1 p i 1 p i 2 p i 3 − . . . + ( − 1 ) k − 1 1 p 1 p 2 . . . p k ) N(\sum _{i}\frac{1}{p_i}-\sum _{i_1<i_2}\frac{1}{p_{i_1}p_{i_2}}+\sum _{i_1<i_2<i_3}\frac{1}{p_{i_1}p_{i_2}p_{i_3}}-...+(-1)^{k-1}\frac{1}{p_1p_2...p_k}) N(ipi1i1<i2pi1pi21+i1<i2<i3pi1pi2pi31...+(1)k1p1p2...pk1)所以 ϕ ( N ) = N ( 1 − ∑ i 1 p i + ∑ i 1 < i 2 1 p i 1 p i 2 − ∑ i 1 < i 2 < i 3 1 p i 1 p i 2 p i 3 − . . . + ( − 1 ) k 1 p 1 p 2 . . . p k ) = N ( 1 − 1 p 1 ) ( 1 − 1 p 2 ) . . . ( 1 − 1 p k ) \phi(N)=N(1-\sum _{i}\frac{1}{p_i}+\sum _{i_1<i_2}\frac{1}{p_{i_1}p_{i_2}}-\sum _{i_1<i_2<i_3}\frac{1}{p_{i_1}p_{i_2}p_{i_3}}-...+(-1)^{k}\frac{1}{p_1p_2...p_k})\\=N(1-\frac{1}{p_1})(1-\frac{1}{p_2})...(1-\frac{1}{p_k}) ϕ(N)=N(1ipi1+i1<i2pi1pi21i1<i2<i3pi1pi2pi31...+(1)kp1p2...pk1)=N(1p11)(1p21)...(1pk1)而代码方面,只需要套用分解质因数的代码即可。代码如下:

#include <iostream>
using namespace std;

int euler(int x) {
  int res = x;
  for (int i = 2; i <= x / i; i++) {
    if (x % i == 0) {
      // 这里i是x的素因子,所以可以先除再乘
      res = res / i * (i - 1);
      while (x % i == 0) x /= i;
    }
  }

  if (x >= 2) res = res / x * (x - 1);
  return res;
}

int main() {
  int n;
  cin >> n;
  while (n--) {
    int a;
    cin >> a;
    cout << euler(a) << endl;
  }
}

每次询问时间复杂度 O ( x ) O(\sqrt x) O(x ),空间 O ( 1 ) O(1) O(1)

  • 4
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值